Source code for gymnasium.vector.vector_env

"""Base class for vectorized environments."""
from __future__ import annotations

from typing import TYPE_CHECKING, Any, Generic, TypeVar

import numpy as np

import gymnasium as gym
from gymnasium.core import ActType, ObsType, RenderFrame
from gymnasium.utils import seeding


if TYPE_CHECKING:
    from gymnasium.envs.registration import EnvSpec

ArrayType = TypeVar("ArrayType")


__all__ = [
    "VectorEnv",
    "VectorWrapper",
    "VectorObservationWrapper",
    "VectorActionWrapper",
    "VectorRewardWrapper",
    "ArrayType",
]


[docs] class VectorEnv(Generic[ObsType, ActType, ArrayType]): """Base class for vectorized environments to run multiple independent copies of the same environment in parallel. Vector environments can provide a linear speed-up in the steps taken per second through sampling multiple sub-environments at the same time. Gymnasium contains two generalised Vector environments: :class:`AsyncVectorEnv` and :class:`SyncVectorEnv` along with several custom vector environment implementations. For :func:`reset` and :func:`step` batches `observations`, `rewards`, `terminations`, `truncations` and `info` for each sub-environment, see the example below. For the `rewards`, `terminations`, and `truncations`, the data is packaged into a NumPy array of shape `(num_envs,)`. For `observations` (and `actions`, the batching process is dependent on the type of observation (and action) space, and generally optimised for neural network input/outputs. For `info`, the data is kept as a dictionary such that a key will give the data for all sub-environment. For creating environments, :func:`make_vec` is a vector environment equivalent to :func:`make` for easily creating vector environments that contains several unique arguments for modifying environment qualities, number of environment, vectorizer type, vectorizer arguments. Note: The info parameter of :meth:`reset` and :meth:`step` was originally implemented before v0.25 as a list of dictionary for each sub-environment. However, this was modified in v0.25+ to be a dictionary with a NumPy array for each key. To use the old info style, utilise the :class:`DictInfoToList` wrapper. Examples: >>> import gymnasium as gym >>> envs = gym.make_vec("CartPole-v1", num_envs=3, vectorization_mode="sync", wrappers=(gym.wrappers.TimeAwareObservation,)) >>> envs = gym.wrappers.vector.ClipReward(envs, min_reward=0.2, max_reward=0.8) >>> envs <ClipReward, SyncVectorEnv(CartPole-v1, num_envs=3)> >>> envs.num_envs 3 >>> envs.action_space MultiDiscrete([2 2 2]) >>> envs.observation_space Box([[-4.80000019e+00 -3.40282347e+38 -4.18879032e-01 -3.40282347e+38 0.00000000e+00] [-4.80000019e+00 -3.40282347e+38 -4.18879032e-01 -3.40282347e+38 0.00000000e+00] [-4.80000019e+00 -3.40282347e+38 -4.18879032e-01 -3.40282347e+38 0.00000000e+00]], [[4.80000019e+00 3.40282347e+38 4.18879032e-01 3.40282347e+38 5.00000000e+02] [4.80000019e+00 3.40282347e+38 4.18879032e-01 3.40282347e+38 5.00000000e+02] [4.80000019e+00 3.40282347e+38 4.18879032e-01 3.40282347e+38 5.00000000e+02]], (3, 5), float64) >>> observations, infos = envs.reset(seed=123) >>> observations array([[ 0.01823519, -0.0446179 , -0.02796401, -0.03156282, 0. ], [ 0.02852531, 0.02858594, 0.0469136 , 0.02480598, 0. ], [ 0.03517495, -0.000635 , -0.01098382, -0.03203924, 0. ]]) >>> infos {} >>> _ = envs.action_space.seed(123) >>> actions = envs.action_space.sample() >>> observations, rewards, terminations, truncations, infos = envs.step(actions) >>> observations array([[ 0.01734283, 0.15089367, -0.02859527, -0.33293587, 1. ], [ 0.02909703, -0.16717631, 0.04740972, 0.3319138 , 1. ], [ 0.03516225, -0.19559774, -0.01162461, 0.25715804, 1. ]]) >>> rewards array([0.8, 0.8, 0.8]) >>> terminations array([False, False, False]) >>> truncations array([False, False, False]) >>> infos {} >>> envs.close() To avoid having to wait for all sub-environments to terminated before resetting, implementations will autoreset sub-environments on episode end (`terminated or truncated is True`). As a result, when adding observations to a replay buffer, this requires a knowning where the observation (and info) for each sub-environment are the first observation from an autoreset. We recommend using an additional variable to store this information. The Vector Environments have the additional attributes for users to understand the implementation - :attr:`num_envs` - The number of sub-environment in the vector environment - :attr:`observation_space` - The batched observation space of the vector environment - :attr:`single_observation_space` - The observation space of a single sub-environment - :attr:`action_space` - The batched action space of the vector environment - :attr:`single_action_space` - The action space of a single sub-environment """ metadata: dict[str, Any] = {} spec: EnvSpec | None = None render_mode: str | None = None closed: bool = False observation_space: gym.Space action_space: gym.Space single_observation_space: gym.Space single_action_space: gym.Space num_envs: int _np_random: np.random.Generator | None = None _np_random_seed: int | None = None
[docs] def reset( self, *, seed: int | None = None, options: dict[str, Any] | None = None, ) -> tuple[ObsType, dict[str, Any]]: # type: ignore """Reset all parallel environments and return a batch of initial observations and info. Args: seed: The environment reset seed options: If to return the options Returns: A batch of observations and info from the vectorized environment. Example: >>> import gymnasium as gym >>> envs = gym.make_vec("CartPole-v1", num_envs=3, vectorization_mode="sync") >>> observations, infos = envs.reset(seed=42) >>> observations array([[ 0.0273956 , -0.00611216, 0.03585979, 0.0197368 ], [ 0.01522993, -0.04562247, -0.04799704, 0.03392126], [-0.03774345, -0.02418869, -0.00942293, 0.0469184 ]], dtype=float32) >>> infos {} """ if seed is not None: self._np_random, self._np_random_seed = seeding.np_random(seed)
[docs] def step( self, actions: ActType ) -> tuple[ObsType, ArrayType, ArrayType, ArrayType, dict[str, Any]]: """Take an action for each parallel environment. Args: actions: Batch of actions with the :attr:`action_space` shape. Returns: Batch of (observations, rewards, terminations, truncations, infos) Note: As the vector environments autoreset for a terminating and truncating sub-environments, this will occur on the next step after `terminated or truncated is True`. Example: >>> import gymnasium as gym >>> import numpy as np >>> envs = gym.make_vec("CartPole-v1", num_envs=3, vectorization_mode="sync") >>> _ = envs.reset(seed=42) >>> actions = np.array([1, 0, 1], dtype=np.int32) >>> observations, rewards, terminations, truncations, infos = envs.step(actions) >>> observations array([[ 0.02727336, 0.18847767, 0.03625453, -0.26141977], [ 0.01431748, -0.24002443, -0.04731862, 0.3110827 ], [-0.03822722, 0.1710671 , -0.00848456, -0.2487226 ]], dtype=float32) >>> rewards array([1., 1., 1.]) >>> terminations array([False, False, False]) >>> terminations array([False, False, False]) >>> infos {} """
[docs] def render(self) -> tuple[RenderFrame, ...] | None: """Returns the rendered frames from the parallel environments. Returns: A tuple of rendered frames from the parallel environments """ raise NotImplementedError( f"{self.__str__()} render function is not implemented." )
[docs] def close(self, **kwargs: Any): """Close all parallel environments and release resources. It also closes all the existing image viewers, then calls :meth:`close_extras` and set :attr:`closed` as ``True``. Warnings: This function itself does not close the environments, it should be handled in :meth:`close_extras`. This is generic for both synchronous and asynchronous vectorized environments. Note: This will be automatically called when garbage collected or program exited. Args: **kwargs: Keyword arguments passed to :meth:`close_extras` """ if self.closed: return self.close_extras(**kwargs) self.closed = True
def close_extras(self, **kwargs: Any): """Clean up the extra resources e.g. beyond what's in this base class.""" pass @property def np_random(self) -> np.random.Generator: """Returns the environment's internal :attr:`_np_random` that if not set will initialise with a random seed. Returns: Instances of `np.random.Generator` """ if self._np_random is None: self._np_random, self._np_random_seed = seeding.np_random() return self._np_random @np_random.setter def np_random(self, value: np.random.Generator): self._np_random = value self._np_random_seed = -1 @property def np_random_seed(self) -> int | None: """Returns the environment's internal :attr:`_np_random_seed` that if not set will first initialise with a random int as seed. If :attr:`np_random_seed` was set directly instead of through :meth:`reset` or :meth:`set_np_random_through_seed`, the seed will take the value -1. Returns: int: the seed of the current `np_random` or -1, if the seed of the rng is unknown """ if self._np_random_seed is None: self._np_random, self._np_random_seed = seeding.np_random() return self._np_random_seed @property def unwrapped(self): """Return the base environment.""" return self def _add_info( self, vector_infos: dict[str, Any], env_info: dict[str, Any], env_num: int ) -> dict[str, Any]: """Add env info to the info dictionary of the vectorized environment. Given the `info` of a single environment add it to the `infos` dictionary which represents all the infos of the vectorized environment. Every `key` of `info` is paired with a boolean mask `_key` representing whether or not the i-indexed environment has this `info`. Args: vector_infos (dict): the infos of the vectorized environment env_info (dict): the info coming from the single environment env_num (int): the index of the single environment Returns: infos (dict): the (updated) infos of the vectorized environment """ for key, value in env_info.items(): # If value is a dictionary, then we apply the `_add_info` recursively. if isinstance(value, dict): array = self._add_info(vector_infos.get(key, {}), value, env_num) # Otherwise, we are a base case to group the data else: # If the key doesn't exist in the vector infos, then we can create an array of that batch type if key not in vector_infos: if type(value) in [int, float, bool] or issubclass( type(value), np.number ): array = np.zeros(self.num_envs, dtype=type(value)) elif isinstance(value, np.ndarray): # We assume that all instances of the np.array info are of the same shape array = np.zeros( (self.num_envs, *value.shape), dtype=value.dtype ) else: # For unknown objects, we use a Numpy object array array = np.full(self.num_envs, fill_value=None, dtype=object) # Otherwise, just use the array that already exists else: array = vector_infos[key] # Assign the data in the `env_num` position # We only want to run this for the base-case data (not recursive data forcing the ugly function structure) array[env_num] = value # Get the array mask and if it doesn't already exist then create a zero bool array array_mask = vector_infos.get( f"_{key}", np.zeros(self.num_envs, dtype=np.bool_) ) array_mask[env_num] = True # Update the vector info with the updated data and mask information vector_infos[key], vector_infos[f"_{key}"] = array, array_mask return vector_infos def __del__(self): """Closes the vector environment.""" if not getattr(self, "closed", True): self.close() def __repr__(self) -> str: """Returns a string representation of the vector environment. Returns: A string containing the class name, number of environments and environment spec id """ if self.spec is None: return f"{self.__class__.__name__}(num_envs={self.num_envs})" else: return ( f"{self.__class__.__name__}({self.spec.id}, num_envs={self.num_envs})" )
[docs] class VectorWrapper(VectorEnv): """Wraps the vectorized environment to allow a modular transformation. This class is the base class for all wrappers for vectorized environments. The subclass could override some methods to change the behavior of the original vectorized environment without touching the original code. Note: Don't forget to call ``super().__init__(env)`` if the subclass overrides :meth:`__init__`. """ def __init__(self, env: VectorEnv): """Initialize the vectorized environment wrapper. Args: env: The environment to wrap """ self.env = env assert isinstance(env, VectorEnv) self._observation_space: gym.Space | None = None self._action_space: gym.Space | None = None self._single_observation_space: gym.Space | None = None self._single_action_space: gym.Space | None = None self._metadata: dict[str, Any] | None = None
[docs] def reset( self, *, seed: int | list[int] | None = None, options: dict[str, Any] | None = None, ) -> tuple[ObsType, dict[str, Any]]: """Reset all environment using seed and options.""" return self.env.reset(seed=seed, options=options)
[docs] def step( self, actions: ActType ) -> tuple[ObsType, ArrayType, ArrayType, ArrayType, dict[str, Any]]: """Step through all environments using the actions returning the batched data.""" return self.env.step(actions)
[docs] def render(self) -> tuple[RenderFrame, ...] | None: """Returns the render mode from the base vector environment.""" return self.env.render()
[docs] def close(self, **kwargs: Any): """Close all environments.""" return self.env.close(**kwargs)
def close_extras(self, **kwargs: Any): """Close all extra resources.""" return self.env.close_extras(**kwargs) @property def unwrapped(self): """Return the base non-wrapped environment.""" return self.env.unwrapped def __repr__(self): """Return the string representation of the vectorized environment.""" return f"<{self.__class__.__name__}, {self.env}>" @property def observation_space(self) -> gym.Space: """Gets the observation space of the vector environment.""" if self._observation_space is None: return self.env.observation_space return self._observation_space @observation_space.setter def observation_space(self, space: gym.Space): """Sets the observation space of the vector environment.""" self._observation_space = space @property def action_space(self) -> gym.Space: """Gets the action space of the vector environment.""" if self._action_space is None: return self.env.action_space return self._action_space @action_space.setter def action_space(self, space: gym.Space): """Sets the action space of the vector environment.""" self._action_space = space @property def single_observation_space(self) -> gym.Space: """Gets the single observation space of the vector environment.""" if self._single_observation_space is None: return self.env.single_observation_space return self._single_observation_space @single_observation_space.setter def single_observation_space(self, space: gym.Space): """Sets the single observation space of the vector environment.""" self._single_observation_space = space @property def single_action_space(self) -> gym.Space: """Gets the single action space of the vector environment.""" if self._single_action_space is None: return self.env.single_action_space return self._single_action_space @single_action_space.setter def single_action_space(self, space): """Sets the single action space of the vector environment.""" self._single_action_space = space @property def num_envs(self) -> int: """Gets the wrapped vector environment's num of the sub-environments.""" return self.env.num_envs @property def np_random(self) -> np.random.Generator: """Returns the environment's internal :attr:`_np_random` that if not set will initialise with a random seed. Returns: Instances of `np.random.Generator` """ return self.env.np_random @np_random.setter def np_random(self, value: np.random.Generator): self.env.np_random = value @property def np_random_seed(self) -> int | None: """The seeds of the vector environment's internal :attr:`_np_random`.""" return self.env.np_random_seed @property def metadata(self): """The metadata of the vector environment.""" if self._metadata is not None: return self._metadata return self.env.metadata @metadata.setter def metadata(self, value): self._metadata = value @property def spec(self) -> EnvSpec | None: """Gets the specification of the wrapped environment.""" return self.env.spec @property def render_mode(self) -> tuple[RenderFrame, ...] | None: """Returns the `render_mode` from the base environment.""" return self.env.render_mode @property def closed(self): """If the environment has closes.""" return self.env.closed @closed.setter def closed(self, value: bool): self.env.closed = value
[docs] class VectorObservationWrapper(VectorWrapper): """Wraps the vectorized environment to allow a modular transformation of the observation. Equivalent to :class:`gymnasium.ObservationWrapper` for vectorized environments. """ def reset( self, *, seed: int | list[int] | None = None, options: dict[str, Any] | None = None, ) -> tuple[ObsType, dict[str, Any]]: """Modifies the observation returned from the environment ``reset`` using the :meth:`observation`.""" observations, infos = self.env.reset(seed=seed, options=options) return self.observations(observations), infos def step( self, actions: ActType ) -> tuple[ObsType, ArrayType, ArrayType, ArrayType, dict[str, Any]]: """Modifies the observation returned from the environment ``step`` using the :meth:`observation`.""" observations, rewards, terminations, truncations, infos = self.env.step(actions) return ( self.observations(observations), rewards, terminations, truncations, infos, )
[docs] def observations(self, observations: ObsType) -> ObsType: """Defines the vector observation transformation. Args: observations: A vector observation from the environment Returns: the transformed observation """ raise NotImplementedError
[docs] class VectorActionWrapper(VectorWrapper): """Wraps the vectorized environment to allow a modular transformation of the actions. Equivalent of :class:`gymnasium.ActionWrapper` for vectorized environments. """ def step( self, actions: ActType ) -> tuple[ObsType, ArrayType, ArrayType, ArrayType, dict[str, Any]]: """Steps through the environment using a modified action by :meth:`action`.""" return self.env.step(self.actions(actions))
[docs] def actions(self, actions: ActType) -> ActType: """Transform the actions before sending them to the environment. Args: actions (ActType): the actions to transform Returns: ActType: the transformed actions """ raise NotImplementedError
[docs] class VectorRewardWrapper(VectorWrapper): """Wraps the vectorized environment to allow a modular transformation of the reward. Equivalent of :class:`gymnasium.RewardWrapper` for vectorized environments. """ def step( self, actions: ActType ) -> tuple[ObsType, ArrayType, ArrayType, ArrayType, dict[str, Any]]: """Steps through the environment returning a reward modified by :meth:`reward`.""" observations, rewards, terminations, truncations, infos = self.env.step(actions) return observations, self.rewards(rewards), terminations, truncations, infos
[docs] def rewards(self, rewards: ArrayType) -> ArrayType: """Transform the reward before returning it. Args: rewards (array): the reward to transform Returns: array: the transformed reward """ raise NotImplementedError