"""Implementation of a space that represents textual strings."""
from __future__ import annotations
from typing import Any
import numpy as np
from numpy.typing import NDArray
from gymnasium.spaces.space import Space
alphanumeric: frozenset[str] = frozenset(
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"
)
[docs]
class Text(Space[str]):
r"""A space representing a string comprised of characters from a given charset.
Example:
>>> from gymnasium.spaces import Text
>>> # {"", "B5", "hello", ...}
>>> Text(5)
Text(1, 5, charset=0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz)
>>> # {"0", "42", "0123456789", ...}
>>> import string
>>> Text(min_length = 1,
... max_length = 10,
... charset = string.digits)
Text(1, 10, charset=0123456789)
"""
def __init__(
self,
max_length: int,
*,
min_length: int = 1,
charset: frozenset[str] | str = alphanumeric,
seed: int | np.random.Generator | None = None,
):
r"""Constructor of :class:`Text` space.
Both bounds for text length are inclusive.
Args:
min_length (int): Minimum text length (in characters). Defaults to 1 to prevent empty strings.
max_length (int): Maximum text length (in characters).
charset (Union[set], str): Character set, defaults to the lower and upper english alphabet plus latin digits.
seed: The seed for sampling from the space.
"""
assert np.issubdtype(
type(min_length), np.integer
), f"Expects the min_length to be an integer, actual type: {type(min_length)}"
assert np.issubdtype(
type(max_length), np.integer
), f"Expects the max_length to be an integer, actual type: {type(max_length)}"
assert (
0 <= min_length
), f"Minimum text length must be non-negative, actual value: {min_length}"
assert (
min_length <= max_length
), f"The min_length must be less than or equal to the max_length, min_length: {min_length}, max_length: {max_length}"
self.min_length: int = int(min_length)
self.max_length: int = int(max_length)
self._char_set: frozenset[str] = frozenset(charset)
self._char_list: tuple[str, ...] = tuple(charset)
self._char_index: dict[str, np.int32] = {
val: np.int32(i) for i, val in enumerate(tuple(charset))
}
self._char_str: str = "".join(sorted(tuple(charset)))
# As the shape is dynamic (between min_length and max_length) then None
super().__init__(dtype=str, seed=seed)
[docs]
def sample(
self,
mask: None | (tuple[int | None, NDArray[np.int8] | None]) = None,
) -> str:
"""Generates a single random sample from this space with by default a random length between ``min_length`` and ``max_length`` and sampled from the ``charset``.
Args:
mask: An optional tuples of length and mask for the text.
The length is expected to be between the ``min_length`` and ``max_length`` otherwise a random integer between ``min_length`` and ``max_length`` is selected.
For the mask, we expect a numpy array of length of the charset passed with ``dtype == np.int8``.
If the charlist mask is all zero then an empty string is returned no matter the ``min_length``
Returns:
A sampled string from the space
"""
if mask is not None:
assert isinstance(
mask, tuple
), f"Expects the mask type to be a tuple, actual type: {type(mask)}"
assert (
len(mask) == 2
), f"Expects the mask length to be two, actual length: {len(mask)}"
length, charlist_mask = mask
if length is not None:
assert np.issubdtype(
type(length), np.integer
), f"Expects the Text sample length to be an integer, actual type: {type(length)}"
assert (
self.min_length <= length <= self.max_length
), f"Expects the Text sample length be between {self.min_length} and {self.max_length}, actual length: {length}"
if charlist_mask is not None:
assert isinstance(
charlist_mask, np.ndarray
), f"Expects the Text sample mask to be an np.ndarray, actual type: {type(charlist_mask)}"
assert (
charlist_mask.dtype == np.int8
), f"Expects the Text sample mask to be an np.ndarray, actual dtype: {charlist_mask.dtype}"
assert charlist_mask.shape == (
len(self.character_set),
), f"expects the Text sample mask to be {(len(self.character_set),)}, actual shape: {charlist_mask.shape}"
assert np.all(
np.logical_or(charlist_mask == 0, charlist_mask == 1)
), f"Expects all masks values to 0 or 1, actual values: {charlist_mask}"
else:
length, charlist_mask = None, None
if length is None:
length = self.np_random.integers(self.min_length, self.max_length + 1)
if charlist_mask is None:
string = self.np_random.choice(self.character_list, size=length)
else:
valid_mask = charlist_mask == 1
valid_indexes = np.where(valid_mask)[0]
if len(valid_indexes) == 0:
if self.min_length == 0:
string = ""
else:
# Otherwise the string will not be contained in the space
raise ValueError(
f"Trying to sample with a minimum length > 0 ({self.min_length}) but the character mask is all zero meaning that no character could be sampled."
)
else:
string = "".join(
self.character_list[index]
for index in self.np_random.choice(valid_indexes, size=length)
)
return "".join(string)
def contains(self, x: Any) -> bool:
"""Return boolean specifying if x is a valid member of this space."""
if isinstance(x, str):
if self.min_length <= len(x) <= self.max_length:
return all(c in self.character_set for c in x)
return False
def __repr__(self) -> str:
"""Gives a string representation of this space."""
return f"Text({self.min_length}, {self.max_length}, charset={self.characters})"
def __eq__(self, other: Any) -> bool:
"""Check whether ``other`` is equivalent to this instance."""
return (
isinstance(other, Text)
and self.min_length == other.min_length
and self.max_length == other.max_length
and self.character_set == other.character_set
)
@property
def character_set(self) -> frozenset[str]:
"""Returns the character set for the space."""
return self._char_set
@property
def character_list(self) -> tuple[str, ...]:
"""Returns a tuple of characters in the space."""
return self._char_list
def character_index(self, char: str) -> np.int32:
"""Returns a unique index for each character in the space's character set."""
return self._char_index[char]
@property
def characters(self) -> str:
"""Returns a string with all Text characters."""
return self._char_str
@property
def is_np_flattenable(self) -> bool:
"""The flattened version is an integer array for each character, padded to the max character length."""
return True