"""A collection of observation wrappers using a lambda function.
* ``TransformObservation`` - Transforms the observation with a function
* ``FilterObservation`` - Filters a ``Tuple`` or ``Dict`` to only include certain keys
* ``FlattenObservation`` - Flattens the observations
* ``GrayscaleObservation`` - Converts a RGB observation to a grayscale observation
* ``ResizeObservation`` - Resizes an array-based observation (normally a RGB observation)
* ``ReshapeObservation`` - Reshapes an array-based observation
* ``RescaleObservation`` - Rescales an observation to between a minimum and maximum value
* ``DtypeObservation`` - Convert an observation to a dtype
* ``RenderObservation`` - Allows the observation to the rendered frame
"""
from __future__ import annotations
from typing import Any, Callable, Final, Sequence
import numpy as np
import gymnasium as gym
from gymnasium import spaces
from gymnasium.core import ActType, ObsType, WrapperObsType
from gymnasium.error import DependencyNotInstalled
__all__ = [
"TransformObservation",
"FilterObservation",
"FlattenObservation",
"GrayscaleObservation",
"ResizeObservation",
"ReshapeObservation",
"RescaleObservation",
"DtypeObservation",
"AddRenderObservation",
]
[docs]
class FilterObservation(
TransformObservation[WrapperObsType, ActType, ObsType],
gym.utils.RecordConstructorArgs,
):
"""Filters a Dict or Tuple observation spaces by a set of keys or indexes.
A vector version of the wrapper exists :class:`gymnasium.wrappers.vector.FilterObservation`.
Example:
>>> import gymnasium as gym
>>> from gymnasium.wrappers import FilterObservation
>>> env = gym.make("CartPole-v1")
>>> env = gym.wrappers.TimeAwareObservation(env, flatten=False)
>>> env.observation_space
Dict('obs': Box([-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38], [4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38], (4,), float32), 'time': Box(0, 500, (1,), int32))
>>> env.reset(seed=42)
({'obs': array([ 0.0273956 , -0.00611216, 0.03585979, 0.0197368 ], dtype=float32), 'time': array([0], dtype=int32)}, {})
>>> env = FilterObservation(env, filter_keys=['time'])
>>> env.reset(seed=42)
({'time': array([0], dtype=int32)}, {})
>>> env.step(0)
({'time': array([1], dtype=int32)}, 1.0, False, False, {})
Change logs:
* v0.12.3 - Initially added, originally called `FilterObservationWrapper`
* v1.0.0 - Rename to `FilterObservation` and add support for tuple observation spaces with integer ``filter_keys``
"""
def __init__(
self, env: gym.Env[ObsType, ActType], filter_keys: Sequence[str | int]
):
"""Constructor for the filter observation wrapper.
Args:
env: The environment to wrap
filter_keys: The set of subspaces to be *included*, use a list of strings for ``Dict`` and integers for ``Tuple`` spaces
"""
if not isinstance(filter_keys, Sequence):
raise TypeError(
f"Expects `filter_keys` to be a Sequence, actual type: {type(filter_keys)}"
)
gym.utils.RecordConstructorArgs.__init__(self, filter_keys=filter_keys)
# Filters for dictionary space
if isinstance(env.observation_space, spaces.Dict):
assert all(isinstance(key, str) for key in filter_keys)
if any(
key not in env.observation_space.spaces.keys() for key in filter_keys
):
missing_keys = [
key
for key in filter_keys
if key not in env.observation_space.spaces.keys()
]
raise ValueError(
"All the `filter_keys` must be included in the observation space.\n"
f"Filter keys: {filter_keys}\n"
f"Observation keys: {list(env.observation_space.spaces.keys())}\n"
f"Missing keys: {missing_keys}"
)
new_observation_space = spaces.Dict(
{key: env.observation_space[key] for key in filter_keys}
)
if len(new_observation_space) == 0:
raise ValueError(
"The observation space is empty due to filtering all of the keys."
)
TransformObservation.__init__(
self,
env=env,
func=lambda obs: {key: obs[key] for key in filter_keys},
observation_space=new_observation_space,
)
# Filter for tuple observation
elif isinstance(env.observation_space, spaces.Tuple):
assert all(isinstance(key, int) for key in filter_keys)
assert len(set(filter_keys)) == len(
filter_keys
), f"Duplicate keys exist, filter_keys: {filter_keys}"
if any(
0 < key and key >= len(env.observation_space) for key in filter_keys
):
missing_index = [
key
for key in filter_keys
if 0 < key and key >= len(env.observation_space)
]
raise ValueError(
"All the `filter_keys` must be included in the length of the observation space.\n"
f"Filter keys: {filter_keys}, length of observation: {len(env.observation_space)}, "
f"missing indexes: {missing_index}"
)
new_observation_spaces = spaces.Tuple(
env.observation_space[key] for key in filter_keys
)
if len(new_observation_spaces) == 0:
raise ValueError(
"The observation space is empty due to filtering all keys."
)
TransformObservation.__init__(
self,
env=env,
func=lambda obs: tuple(obs[key] for key in filter_keys),
observation_space=new_observation_spaces,
)
else:
raise ValueError(
f"FilterObservation wrapper is only usable with `Dict` and `Tuple` observations, actual type: {type(env.observation_space)}"
)
self.filter_keys: Final[Sequence[str | int]] = filter_keys
[docs]
class FlattenObservation(
TransformObservation[WrapperObsType, ActType, ObsType],
gym.utils.RecordConstructorArgs,
):
"""Flattens the environment's observation space and each observation from ``reset`` and ``step`` functions.
A vector version of the wrapper exists :class:`gymnasium.wrappers.vector.FlattenObservation`.
Example:
>>> import gymnasium as gym
>>> from gymnasium.wrappers import FlattenObservation
>>> env = gym.make("CarRacing-v2")
>>> env.observation_space.shape
(96, 96, 3)
>>> env = FlattenObservation(env)
>>> env.observation_space.shape
(27648,)
>>> obs, _ = env.reset()
>>> obs.shape
(27648,)
Change logs:
* v0.15.0 - Initially added
"""
def __init__(self, env: gym.Env[ObsType, ActType]):
"""Constructor for any environment's observation space that implements ``spaces.utils.flatten_space`` and ``spaces.utils.flatten``.
Args:
env: The environment to wrap
"""
gym.utils.RecordConstructorArgs.__init__(self)
TransformObservation.__init__(
self,
env=env,
func=lambda obs: spaces.utils.flatten(env.observation_space, obs),
observation_space=spaces.utils.flatten_space(env.observation_space),
)
[docs]
class GrayscaleObservation(
TransformObservation[WrapperObsType, ActType, ObsType],
gym.utils.RecordConstructorArgs,
):
"""Converts an image observation computed by ``reset`` and ``step`` from RGB to Grayscale.
The :attr:`keep_dim` will keep the channel dimension.
A vector version of the wrapper exists :class:`gymnasium.wrappers.vector.GrayscaleObservation`.
Example:
>>> import gymnasium as gym
>>> from gymnasium.wrappers import GrayscaleObservation
>>> env = gym.make("CarRacing-v2")
>>> env.observation_space.shape
(96, 96, 3)
>>> grayscale_env = GrayscaleObservation(env)
>>> grayscale_env.observation_space.shape
(96, 96)
>>> grayscale_env = GrayscaleObservation(env, keep_dim=True)
>>> grayscale_env.observation_space.shape
(96, 96, 1)
Change logs:
* v0.15.0 - Initially added, originally called ``GrayScaleObservation``
* v1.0.0 - Renamed to ``GrayscaleObservation``
"""
def __init__(self, env: gym.Env[ObsType, ActType], keep_dim: bool = False):
"""Constructor for an RGB image based environments to make the image grayscale.
Args:
env: The environment to wrap
keep_dim: If to keep the channel in the observation, if ``True``, ``obs.shape == 3`` else ``obs.shape == 2``
"""
assert isinstance(env.observation_space, spaces.Box)
assert (
len(env.observation_space.shape) == 3
and env.observation_space.shape[-1] == 3
)
assert (
np.all(env.observation_space.low == 0)
and np.all(env.observation_space.high == 255)
and env.observation_space.dtype == np.uint8
)
gym.utils.RecordConstructorArgs.__init__(self, keep_dim=keep_dim)
self.keep_dim: Final[bool] = keep_dim
if keep_dim:
new_observation_space = spaces.Box(
low=0,
high=255,
shape=env.observation_space.shape[:2] + (1,),
dtype=np.uint8,
)
TransformObservation.__init__(
self,
env=env,
func=lambda obs: np.expand_dims(
np.sum(
np.multiply(obs, np.array([0.2125, 0.7154, 0.0721])), axis=-1
).astype(np.uint8),
axis=-1,
),
observation_space=new_observation_space,
)
else:
new_observation_space = spaces.Box(
low=0, high=255, shape=env.observation_space.shape[:2], dtype=np.uint8
)
TransformObservation.__init__(
self,
env=env,
func=lambda obs: np.sum(
np.multiply(obs, np.array([0.2125, 0.7154, 0.0721])), axis=-1
).astype(np.uint8),
observation_space=new_observation_space,
)
[docs]
class ResizeObservation(
TransformObservation[WrapperObsType, ActType, ObsType],
gym.utils.RecordConstructorArgs,
):
"""Resizes image observations using OpenCV to a specified shape.
A vector version of the wrapper exists :class:`gymnasium.wrappers.vector.ResizeObservation`.
Example:
>>> import gymnasium as gym
>>> from gymnasium.wrappers import ResizeObservation
>>> env = gym.make("CarRacing-v2")
>>> env.observation_space.shape
(96, 96, 3)
>>> resized_env = ResizeObservation(env, (32, 32))
>>> resized_env.observation_space.shape
(32, 32, 3)
Change logs:
* v0.12.6 - Initially added
* v1.0.0 - Requires ``shape`` with a tuple of two integers
"""
def __init__(self, env: gym.Env[ObsType, ActType], shape: tuple[int, int]):
"""Constructor that requires an image environment observation space with a shape.
Args:
env: The environment to wrap
shape: The resized observation shape
"""
assert isinstance(env.observation_space, spaces.Box)
assert len(env.observation_space.shape) in {2, 3}
assert np.all(env.observation_space.low == 0) and np.all(
env.observation_space.high == 255
)
assert env.observation_space.dtype == np.uint8
assert isinstance(shape, tuple)
assert len(shape) == 2
assert all(np.issubdtype(type(elem), np.integer) for elem in shape)
assert all(x > 0 for x in shape)
try:
import cv2
except ImportError as e:
raise DependencyNotInstalled(
"opencv (cv2) is not installed, run `pip install gymnasium[other]`"
) from e
self.shape: Final[tuple[int, int]] = tuple(shape)
# for some reason, cv2.resize will return the shape in reverse, todo confirm implementation
self.cv2_shape: Final[tuple[int, int]] = (shape[1], shape[0])
new_observation_space = spaces.Box(
low=0,
high=255,
shape=self.shape + env.observation_space.shape[2:],
dtype=np.uint8,
)
gym.utils.RecordConstructorArgs.__init__(self, shape=shape)
TransformObservation.__init__(
self,
env=env,
func=lambda obs: cv2.resize(
obs, self.cv2_shape, interpolation=cv2.INTER_AREA
),
observation_space=new_observation_space,
)
[docs]
class ReshapeObservation(
TransformObservation[WrapperObsType, ActType, ObsType],
gym.utils.RecordConstructorArgs,
):
"""Reshapes Array based observations to a specified shape.
A vector version of the wrapper exists :class:`gymnasium.wrappers.vector.RescaleObservation`.
Example:
>>> import gymnasium as gym
>>> from gymnasium.wrappers import ReshapeObservation
>>> env = gym.make("CarRacing-v2")
>>> env.observation_space.shape
(96, 96, 3)
>>> reshape_env = ReshapeObservation(env, (24, 4, 96, 1, 3))
>>> reshape_env.observation_space.shape
(24, 4, 96, 1, 3)
Change logs:
* v1.0.0 - Initially added
"""
def __init__(self, env: gym.Env[ObsType, ActType], shape: int | tuple[int, ...]):
"""Constructor for env with ``Box`` observation space that has a shape product equal to the new shape product.
Args:
env: The environment to wrap
shape: The reshaped observation space
"""
assert isinstance(env.observation_space, spaces.Box)
assert np.prod(shape) == np.prod(env.observation_space.shape)
assert isinstance(shape, tuple)
assert all(np.issubdtype(type(elem), np.integer) for elem in shape)
assert all(x > 0 or x == -1 for x in shape)
new_observation_space = spaces.Box(
low=np.reshape(np.ravel(env.observation_space.low), shape),
high=np.reshape(np.ravel(env.observation_space.high), shape),
shape=shape,
dtype=env.observation_space.dtype,
)
self.shape = shape
gym.utils.RecordConstructorArgs.__init__(self, shape=shape)
TransformObservation.__init__(
self,
env=env,
func=lambda obs: np.reshape(obs, shape),
observation_space=new_observation_space,
)
[docs]
class RescaleObservation(
TransformObservation[WrapperObsType, ActType, ObsType],
gym.utils.RecordConstructorArgs,
):
"""Affinely (linearly) rescales a ``Box`` observation space of the environment to within the range of ``[min_obs, max_obs]``.
A vector version of the wrapper exists :class:`gymnasium.wrappers.vector.RescaleObservation`.
Example:
>>> import gymnasium as gym
>>> from gymnasium.wrappers import RescaleObservation
>>> env = gym.make("Pendulum-v1")
>>> env.observation_space
Box([-1. -1. -8.], [1. 1. 8.], (3,), float32)
>>> env = RescaleObservation(env, np.array([-2, -1, -10], dtype=np.float32), np.array([1, 0, 1], dtype=np.float32))
>>> env.observation_space
Box([ -2. -1. -10.], [1. 0. 1.], (3,), float32)
Change logs:
* v1.0.0 - Initially added
"""
def __init__(
self,
env: gym.Env[ObsType, ActType],
min_obs: np.floating | np.integer | np.ndarray,
max_obs: np.floating | np.integer | np.ndarray,
):
"""Constructor that requires the env observation spaces to be a :class:`Box`.
Args:
env: The environment to wrap
min_obs: The new minimum observation bound
max_obs: The new maximum observation bound
"""
assert isinstance(env.observation_space, spaces.Box)
assert not np.any(env.observation_space.low == np.inf) and not np.any(
env.observation_space.high == np.inf
)
if not isinstance(min_obs, np.ndarray):
assert np.issubdtype(type(min_obs), np.integer) or np.issubdtype(
type(max_obs), np.floating
)
min_obs = np.full(env.observation_space.shape, min_obs)
assert (
min_obs.shape == env.observation_space.shape
), f"{min_obs.shape}, {env.observation_space.shape}, {min_obs}, {env.observation_space.low}"
assert not np.any(min_obs == np.inf)
if not isinstance(max_obs, np.ndarray):
assert np.issubdtype(type(max_obs), np.integer) or np.issubdtype(
type(max_obs), np.floating
)
max_obs = np.full(env.observation_space.shape, max_obs)
assert max_obs.shape == env.observation_space.shape
assert not np.any(max_obs == np.inf)
self.min_obs = min_obs
self.max_obs = max_obs
# Imagine the x-axis between the old Box and the y-axis being the new Box
high_low_diff = np.array(
env.observation_space.high, dtype=np.float128
) - np.array(env.observation_space.low, dtype=np.float128)
gradient = np.array(
(max_obs - min_obs) / high_low_diff, dtype=env.observation_space.dtype
)
intercept = gradient * -env.observation_space.low + min_obs
gym.utils.RecordConstructorArgs.__init__(self, min_obs=min_obs, max_obs=max_obs)
TransformObservation.__init__(
self,
env=env,
func=lambda obs: gradient * obs + intercept,
observation_space=spaces.Box(
low=min_obs,
high=max_obs,
shape=env.observation_space.shape,
dtype=env.observation_space.dtype,
),
)
[docs]
class DtypeObservation(
TransformObservation[WrapperObsType, ActType, ObsType],
gym.utils.RecordConstructorArgs,
):
"""Modifies the dtype of an observation array to a specified dtype.
Note:
This is only compatible with :class:`Box`, :class:`Discrete`, :class:`MultiDiscrete` and :class:`MultiBinary` observation spaces
A vector version of the wrapper exists :class:`gymnasium.wrappers.vector.DtypeObservation`.
Change logs:
* v1.0.0 - Initially added
"""
def __init__(self, env: gym.Env[ObsType, ActType], dtype: Any):
"""Constructor for Dtype observation wrapper.
Args:
env: The environment to wrap
dtype: The new dtype of the observation
"""
assert isinstance(
env.observation_space,
(spaces.Box, spaces.Discrete, spaces.MultiDiscrete, spaces.MultiBinary),
)
self.dtype = dtype
if isinstance(env.observation_space, spaces.Box):
new_observation_space = spaces.Box(
low=env.observation_space.low,
high=env.observation_space.high,
shape=env.observation_space.shape,
dtype=self.dtype,
)
elif isinstance(env.observation_space, spaces.Discrete):
new_observation_space = spaces.Box(
low=env.observation_space.start,
high=env.observation_space.start + env.observation_space.n,
shape=(),
dtype=self.dtype,
)
elif isinstance(env.observation_space, spaces.MultiDiscrete):
new_observation_space = spaces.MultiDiscrete(
env.observation_space.nvec, dtype=dtype
)
elif isinstance(env.observation_space, spaces.MultiBinary):
new_observation_space = spaces.Box(
low=0,
high=1,
shape=env.observation_space.shape,
dtype=self.dtype,
)
else:
raise TypeError(
"DtypeObservation is only compatible with value / array-based observations."
)
gym.utils.RecordConstructorArgs.__init__(self, dtype=dtype)
TransformObservation.__init__(
self,
env=env,
func=lambda obs: dtype(obs),
observation_space=new_observation_space,
)
[docs]
class AddRenderObservation(
TransformObservation[WrapperObsType, ActType, ObsType],
gym.utils.RecordConstructorArgs,
):
"""Includes the rendered observations in the environment's observations.
Notes:
This was previously called ``PixelObservationWrapper``.
No vector version of the wrapper exists.
Example - Replace the observation with the rendered image:
>>> env = gym.make("CartPole-v1", render_mode="rgb_array")
>>> env = AddRenderObservation(env, render_only=True)
>>> env.observation_space
Box(0, 255, (400, 600, 3), uint8)
>>> obs, _ = env.reset(seed=123)
>>> image = env.render()
>>> np.all(obs == image)
True
>>> obs, *_ = env.step(env.action_space.sample())
>>> image = env.render()
>>> np.all(obs == image)
True
Example - Add the rendered image to the original observation as a dictionary item:
>>> env = gym.make("CartPole-v1", render_mode="rgb_array")
>>> env = AddRenderObservation(env, render_only=False)
>>> env.observation_space
Dict('pixels': Box(0, 255, (400, 600, 3), uint8), 'state': Box([-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38], [4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38], (4,), float32))
>>> obs, info = env.reset(seed=123)
>>> obs.keys()
dict_keys(['state', 'pixels'])
>>> obs["state"]
array([ 0.01823519, -0.0446179 , -0.02796401, -0.03156282], dtype=float32)
>>> np.all(obs["pixels"] == env.render())
True
>>> obs, reward, terminates, truncates, info = env.step(env.action_space.sample())
>>> image = env.render()
>>> np.all(obs["pixels"] == image)
True
Change logs:
* v0.15.0 - Initially added as ``PixelObservationWrapper``
* v1.0.0 - Renamed to ``AddRenderObservation``
"""
def __init__(
self,
env: gym.Env[ObsType, ActType],
render_only: bool = True,
render_key: str = "pixels",
obs_key: str = "state",
):
"""Constructor of the add render observation wrapper.
Args:
env: The environment to wrap.
render_only (bool): If ``True`` (default), the original observation returned
by the wrapped environment will be discarded, and a dictionary
observation will only include pixels. If ``False``, the
observation dictionary will contain both the original
observations and the pixel observations.
render_key: Optional custom string specifying the pixel key. Defaults to "pixels"
obs_key: Optional custom string specifying the obs key. Defaults to "state"
"""
gym.utils.RecordConstructorArgs.__init__(
self,
pixels_only=render_only,
pixels_key=render_key,
obs_key=obs_key,
)
assert env.render_mode is not None and env.render_mode != "human"
env.reset()
pixels = env.render()
assert pixels is not None and isinstance(pixels, np.ndarray)
pixel_space = spaces.Box(low=0, high=255, shape=pixels.shape, dtype=np.uint8)
if render_only:
obs_space = pixel_space
TransformObservation.__init__(
self, env=env, func=lambda _: self.render(), observation_space=obs_space
)
elif isinstance(env.observation_space, spaces.Dict):
assert render_key not in env.observation_space.spaces.keys()
obs_space = spaces.Dict(
{render_key: pixel_space, **env.observation_space.spaces}
)
TransformObservation.__init__(
self,
env=env,
func=lambda obs: {render_key: self.render(), **obs},
observation_space=obs_space,
)
else:
obs_space = spaces.Dict(
{obs_key: env.observation_space, render_key: pixel_space}
)
TransformObservation.__init__(
self,
env=env,
func=lambda obs: {obs_key: obs, render_key: self.render()},
observation_space=obs_space,
)