Wrappers#
Observation Wrappers#
- class gymnasium.experimental.wrappers.LambdaObservationV0(env: gym.Env[ObsType, ActType], func: Callable[[ObsType], Any], observation_space: gym.Space[WrapperObsType] | None)[source]#
Transforms an observation via a function provided to the wrapper.
The function
func
will be applied to all observations. If the observations fromfunc
are outside the bounds of theenv
’s observation space, provide anobservation_space
.Example
>>> import gymnasium as gym >>> from gymnasium.experimental.wrappers import LambdaObservationV0 >>> import numpy as np >>> np.random.seed(0) >>> env = gym.make("CartPole-v1") >>> env = LambdaObservationV0(env, lambda obs: obs + 0.1 * np.random.random(obs.shape), env.observation_space) >>> env.reset(seed=42) (array([0.08227695, 0.06540678, 0.09613613, 0.07422512]), {})
- Parameters:
env – The environment to wrap
func – A function that will transform an observation. If this transformed observation is outside the observation space of
env.observation_space
then provide an observation_space.observation_space – The observation spaces of the wrapper, if None, then it is assumed the same as
env.observation_space
.
- class gymnasium.experimental.wrappers.FilterObservationV0(env: gym.Env[ObsType, ActType], filter_keys: Sequence[str | int])[source]#
Filters Dict or Tuple observation space by the keys or indexes.
Example
>>> import gymnasium as gym >>> from gymnasium.wrappers import TransformObservation >>> from gymnasium.experimental.wrappers import FilterObservationV0 >>> env = gym.make("CartPole-v1") >>> env = gym.wrappers.TransformObservation(env, lambda obs: {'obs': obs, 'time': 0}) >>> env.observation_space = gym.spaces.Dict(obs=env.observation_space, time=gym.spaces.Discrete(1)) >>> env.reset(seed=42) ({'obs': array([ 0.0273956 , -0.00611216, 0.03585979, 0.0197368 ], dtype=float32), 'time': 0}, {}) >>> env = FilterObservationV0(env, filter_keys=['time']) >>> env.reset(seed=42) ({'time': 0}, {}) >>> env.step(0) ({'time': 0}, 1.0, False, False, {})
- Parameters:
env – The environment to wrap
filter_keys – The subspaces to be included, use a list of strings or integers for
Dict
andTuple
spaces respectivesly
- class gymnasium.experimental.wrappers.FlattenObservationV0(env: Env[ObsType, ActType])[source]#
Observation wrapper that flattens the observation.
Example
>>> import gymnasium as gym >>> from gymnasium.experimental.wrappers import FlattenObservationV0 >>> env = gym.make("CarRacing-v2") >>> env.observation_space.shape (96, 96, 3) >>> env = FlattenObservationV0(env) >>> env.observation_space.shape (27648,) >>> obs, _ = env.reset() >>> obs.shape (27648,)
- Parameters:
env – The environment to wrap
- class gymnasium.experimental.wrappers.GrayscaleObservationV0(env: Env[ObsType, ActType], keep_dim: bool = False)[source]#
Observation wrapper that converts an RGB image to grayscale.
The
keep_dim
will keep the channel dimensionExample
>>> import gymnasium as gym >>> from gymnasium.experimental.wrappers import GrayscaleObservationV0 >>> env = gym.make("CarRacing-v2") >>> env.observation_space.shape (96, 96, 3) >>> grayscale_env = GrayscaleObservationV0(env) >>> grayscale_env.observation_space.shape (96, 96) >>> grayscale_env = GrayscaleObservationV0(env, keep_dim=True) >>> grayscale_env.observation_space.shape (96, 96, 1)
- Parameters:
env – The environment to wrap
keep_dim – If to keep the channel in the observation, if
True
,obs.shape == 3
elseobs.shape == 2
- class gymnasium.experimental.wrappers.ResizeObservationV0(env: Env[ObsType, ActType], shape: tuple[int, ...])[source]#
Resizes image observations using OpenCV to shape.
Example
>>> import gymnasium as gym >>> from gymnasium.experimental.wrappers import ResizeObservationV0 >>> env = gym.make("CarRacing-v2") >>> env.observation_space.shape (96, 96, 3) >>> resized_env = ResizeObservationV0(env, (32, 32)) >>> resized_env.observation_space.shape (32, 32, 3)
- Parameters:
env – The environment to wrap
shape – The resized observation shape
- class gymnasium.experimental.wrappers.ReshapeObservationV0(env: gym.Env[ObsType, ActType], shape: int | tuple[int, ...])[source]#
Reshapes array based observations to shapes.
Example
>>> import gymnasium as gym >>> from gymnasium.experimental.wrappers import ReshapeObservationV0 >>> env = gym.make("CarRacing-v2") >>> env.observation_space.shape (96, 96, 3) >>> reshape_env = ReshapeObservationV0(env, (24, 4, 96, 1, 3)) >>> reshape_env.observation_space.shape (24, 4, 96, 1, 3)
- Parameters:
env – The environment to wrap
shape – The reshaped observation space
- class gymnasium.experimental.wrappers.RescaleObservationV0(env: gym.Env[ObsType, ActType], min_obs: np.floating | np.integer | np.ndarray, max_obs: np.floating | np.integer | np.ndarray)[source]#
Linearly rescales observation to between a minimum and maximum value.
Example
>>> import gymnasium as gym >>> from gymnasium.experimental.wrappers import RescaleObservationV0 >>> env = gym.make("Pendulum-v1") >>> env.observation_space Box([-1. -1. -8.], [1. 1. 8.], (3,), float32) >>> env = RescaleObservationV0(env, np.array([-2, -1, -10], dtype=np.float32), np.array([1, 0, 1], dtype=np.float32)) >>> env.observation_space Box([ -2. -1. -10.], [1. 0. 1.], (3,), float32)
- Parameters:
env – The environment to wrap
min_obs – The new minimum observation bound
max_obs – The new maximum observation bound
- class gymnasium.experimental.wrappers.DtypeObservationV0(env: Env[ObsType, ActType], dtype: Any)[source]#
Observation wrapper for transforming the dtype of an observation.
Note
This is only compatible with
Box
,Discrete
,MultiDiscrete
andMultiBinary
observation spaces- Parameters:
env – The environment to wrap
dtype – The new dtype of the observation
- class gymnasium.experimental.wrappers.PixelObservationV0(env: Env[ObsType, ActType], pixels_only: bool = True, pixels_key: str = 'pixels', obs_key: str = 'state')[source]#
Includes the rendered observations to the environment’s observations.
Observations of this wrapper will be dictionaries of images. You can also choose to add the observation of the base environment to this dictionary. In that case, if the base environment has an observation space of type
Dict
, the dictionary of rendered images will be updated with the base environment’s observation. If, however, the observation space is of typeBox
, the base environment’s observation (which will be an element of theBox
space) will be added to the dictionary under the key “state”.- Parameters:
env – The environment to wrap.
pixels_only (bool) – If
True
(default), the original observation returned by the wrapped environment will be discarded, and a dictionary observation will only include pixels. IfFalse
, the observation dictionary will contain both the original observations and the pixel observations.pixels_key – Optional custom string specifying the pixel key. Defaults to “pixels”
obs_key – Optional custom string specifying the obs key. Defaults to “state”
- class gymnasium.experimental.wrappers.NormalizeObservationV0(env: Env[ObsType, ActType], epsilon: float = 1e-8)[source]#
This wrapper will normalize observations s.t. each coordinate is centered with unit variance.
The property _update_running_mean allows to freeze/continue the running mean calculation of the observation statistics. If True (default), the RunningMeanStd will get updated every time self.observation() is called. If False, the calculated statistics are used but not updated anymore; this may be used during evaluation.
Note
The normalization depends on past trajectories and observations will not be normalized correctly if the wrapper was newly instantiated or the policy was changed recently.
- Parameters:
env (Env) – The environment to apply the wrapper
epsilon – A stability parameter that is used when scaling the observations.
- class gymnasium.experimental.wrappers.TimeAwareObservationV0(env: Env[ObsType, ActType], flatten: bool = False, normalize_time: bool = True, *, dict_time_key: str = 'time')[source]#
Augment the observation with time information of the episode.
The
normalize_time
ifTrue
represents time as a normalized value between [0,1] otherwise ifFalse
, the number of timesteps remaining before truncation occurs is an integer.For environments with
Dict
observation spaces, the time information is automatically added in the key “time” (can be changed throughdict_time_key
) and for environments withTuple
observation space, the time information is added as the final element in the tuple. Otherwise, the observation space is transformed into aDict
observation space with two keys, “obs” for the base environment’s observation and “time” for the time information.To flatten the observation, use the
flatten
parameter which will use thegymnasium.spaces.utils.flatten()
function.Example
>>> import gymnasium as gym >>> from gymnasium.experimental.wrappers import TimeAwareObservationV0 >>> env = gym.make("CartPole-v1") >>> env = TimeAwareObservationV0(env) >>> env.observation_space Dict('obs': Box([-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38], [4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38], (4,), float32), 'time': Box(0.0, 1.0, (1,), float32)) >>> env.reset(seed=42)[0] {'obs': array([ 0.0273956 , -0.00611216, 0.03585979, 0.0197368 ], dtype=float32), 'time': array([0.], dtype=float32)} >>> _ = env.action_space.seed(42) >>> env.step(env.action_space.sample())[0] {'obs': array([ 0.02727336, -0.20172954, 0.03625453, 0.32351476], dtype=float32), 'time': array([0.002], dtype=float32)}
- Unnormalize time observation space example:
>>> env = gym.make('CartPole-v1') >>> env = TimeAwareObservationV0(env, normalize_time=False) >>> env.observation_space Dict('obs': Box([-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38], [4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38], (4,), float32), 'time': Box(0, 500, (1,), int32)) >>> env.reset(seed=42)[0] {'obs': array([ 0.0273956 , -0.00611216, 0.03585979, 0.0197368 ], dtype=float32), 'time': array([500], dtype=int32)} >>> _ = env.action_space.seed(42)[0] >>> env.step(env.action_space.sample())[0] {'obs': array([ 0.02727336, -0.20172954, 0.03625453, 0.32351476], dtype=float32), 'time': array([499], dtype=int32)}
- Flatten observation space example:
>>> env = gym.make("CartPole-v1") >>> env = TimeAwareObservationV0(env, flatten=True) >>> env.observation_space Box([-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38 0.0000000e+00], [4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38 1.0000000e+00], (5,), float32) >>> env.reset(seed=42)[0] array([ 0.0273956 , -0.00611216, 0.03585979, 0.0197368 , 0. ], dtype=float32) >>> _ = env.action_space.seed(42) >>> env.step(env.action_space.sample())[0] array([ 0.02727336, -0.20172954, 0.03625453, 0.32351476, 0.002 ], dtype=float32)
- Parameters:
env – The environment to apply the wrapper
flatten – Flatten the observation to a Box of a single dimension
normalize_time – if True return time in the range [0,1] otherwise return time as remaining timesteps before truncation
dict_time_key – For environment with a
Dict
observation space, the key for the time space. By default, “time”.
- class gymnasium.experimental.wrappers.FrameStackObservationV0(env: gym.Env[ObsType, ActType], stack_size: int, *, zeros_obs: ObsType | None = None)[source]#
Observation wrapper that stacks the observations in a rolling manner.
For example, if the number of stacks is 4, then the returned observation contains the most recent 4 observations. For environment ‘Pendulum-v1’, the original observation is an array with shape [3], so if we stack 4 observations, the processed observation has shape [4, 3].
Note
After
reset()
is called, the frame buffer will be filled with the initial observation. I.e. the observation returned byreset()
will consist of num_stack many identical frames.
Example
>>> import gymnasium as gym >>> from gymnasium.experimental.wrappers import FrameStackObservationV0 >>> env = gym.make("CarRacing-v2") >>> env = FrameStackObservationV0(env, 4) >>> env.observation_space Box(0, 255, (4, 96, 96, 3), uint8) >>> obs, _ = env.reset() >>> obs.shape (4, 96, 96, 3)
- Parameters:
env – The environment to apply the wrapper
stack_size – The number of frames to stack with zero_obs being used originally.
zeros_obs – Keyword only parameter that allows a custom padding observation at
reset()
- class gymnasium.experimental.wrappers.DelayObservationV0(env: Env[ObsType, ActType], delay: int)[source]#
Wrapper which adds a delay to the returned observation.
Before reaching the
delay
number of timesteps, returned observations is an array of zeros with the same shape as the observation space.Example
>>> import gymnasium as gym >>> env = gym.make("CartPole-v1") >>> env.reset(seed=123) (array([ 0.01823519, -0.0446179 , -0.02796401, -0.03156282], dtype=float32), {})
>>> env = DelayObservationV0(env, delay=2) >>> env.reset(seed=123) (array([0., 0., 0., 0.], dtype=float32), {}) >>> env.step(env.action_space.sample()) (array([0., 0., 0., 0.], dtype=float32), 1.0, False, False, {}) >>> env.step(env.action_space.sample()) (array([ 0.01823519, -0.0446179 , -0.02796401, -0.03156282], dtype=float32), 1.0, False, False, {})
Note
This does not support random delay values, if users are interested, please raise an issue or pull request to add this feature.
- Parameters:
env – The environment to wrap
delay – The number of timesteps to delay observations
- class gymnasium.experimental.wrappers.AtariPreprocessingV0(env: Env, noop_max: int = 30, frame_skip: int = 4, screen_size: int = 84, terminal_on_life_loss: bool = False, grayscale_obs: bool = True, grayscale_newaxis: bool = False, scale_obs: bool = False)[source]#
Atari 2600 preprocessing wrapper.
This class follows the guidelines in Machado et al. (2018), “Revisiting the Arcade Learning Environment: Evaluation Protocols and Open Problems for General Agents”.
Specifically, the following preprocess stages applies to the atari environment:
Noop Reset: Obtains the initial state by taking a random number of no-ops on reset, default max 30 no-ops.
Frame skipping: The number of frames skipped between steps, 4 by default
Max-pooling: Pools over the most recent two observations from the frame skips
- Termination signal when a life is lost: When the agent losses a life during the environment, then the environment is terminated.
Turned off by default. Not recommended by Machado et al. (2018).
Resize to a square image: Resizes the atari environment original observation shape from 210x180 to 84x84 by default
Grayscale observation: If the observation is colour or greyscale, by default, greyscale.
Scale observation: If to scale the observation between [0, 1) or [0, 255), by default, not scaled.
- Parameters:
env (Env) – The environment to apply the preprocessing
noop_max (int) – For No-op reset, the max number no-ops actions are taken at reset, to turn off, set to 0.
frame_skip (int) – The number of frames between new observation the agents observations effecting the frequency at which the agent experiences the game.
screen_size (int) – resize Atari frame
terminal_on_life_loss (bool) – if True, then
step()
returns terminated=True whenever a life is lost.grayscale_obs (bool) – if True, then gray scale observation is returned, otherwise, RGB observation is returned.
grayscale_newaxis (bool) – if True and grayscale_obs=True, then a channel axis is added to grayscale observations to make them 3-dimensional.
scale_obs (bool) – if True, then observation normalized in range [0,1) is returned. It also limits memory optimization benefits of FrameStack Wrapper.
- Raises:
DependencyNotInstalled – opencv-python package not installed
ValueError – Disable frame-skipping in the original env
Action Wrappers#
- class gymnasium.experimental.wrappers.LambdaActionV0(env: gym.Env[ObsType, ActType], func: Callable[[WrapperActType], ActType], action_space: Space[WrapperActType] | None)[source]#
A wrapper that provides a function to modify the action passed to
step()
.- Parameters:
env – The environment to wrap
func – Function to apply to the
step()
’saction
action_space – The updated action space of the wrapper given the function.
- class gymnasium.experimental.wrappers.ClipActionV0(env: Env[ObsType, ActType])[source]#
Clip the continuous action within the valid
Box
observation space bound.Example
>>> import gymnasium as gym >>> from gymnasium.experimental.wrappers import ClipActionV0 >>> import numpy as np >>> env = gym.make("Hopper-v4", disable_env_checker=True) >>> env = ClipActionV0(env) >>> env.action_space Box(-inf, inf, (3,), float32) >>> _ = env.reset(seed=42) >>> _ = env.step(np.array([5.0, -2.0, 0.0], dtype=np.float32)) ... # Executes the action np.array([1.0, -1.0, 0]) in the base environment
- Parameters:
env – The environment to wrap
- class gymnasium.experimental.wrappers.RescaleActionV0(env: gym.Env[ObsType, ActType], min_action: float | int | np.ndarray, max_action: float | int | np.ndarray)[source]#
Affinely rescales the continuous action space of the environment to the range [min_action, max_action].
The base environment
env
must have an action space of typespaces.Box
. Ifmin_action
ormax_action
are numpy arrays, the shape must match the shape of the environment’s action space.Example
>>> import gymnasium as gym >>> from gymnasium.experimental.wrappers import RescaleActionV0 >>> import numpy as np >>> env = gym.make("Hopper-v4", disable_env_checker=True) >>> _ = env.reset(seed=42) >>> obs, _, _, _, _ = env.step(np.array([1, 1, 1], dtype=np.float32)) >>> _ = env.reset(seed=42) >>> min_action = -0.5 >>> max_action = np.array([0.0, 0.5, 0.75], dtype=np.float32) >>> wrapped_env = RescaleActionV0(env, min_action=min_action, max_action=max_action) >>> wrapped_env_obs, _, _, _, _ = wrapped_env.step(max_action) >>> np.alltrue(obs == wrapped_env_obs) True
- Parameters:
env (Env) – The environment to wrap
min_action (float, int or np.ndarray) – The min values for each action. This may be a numpy array or a scalar.
max_action (float, int or np.ndarray) – The max values for each action. This may be a numpy array or a scalar.
- class gymnasium.experimental.wrappers.StickyActionV0(env: Env[ObsType, ActType], repeat_action_probability: float)[source]#
Wrapper which adds a probability of repeating the previous action.
This wrapper follows the implementation proposed by Machado et al., 2018 in Section 5.2 on page 12.
- Parameters:
env (Env) – the wrapped environment
repeat_action_probability (int | float) – a probability of repeating the old action.
Reward Wrappers#
- class gymnasium.experimental.wrappers.LambdaRewardV0(env: Env[ObsType, ActType], func: Callable[[SupportsFloat], SupportsFloat])[source]#
A reward wrapper that allows a custom function to modify the step reward.
Example
>>> import gymnasium as gym >>> from gymnasium.experimental.wrappers import LambdaRewardV0 >>> env = gym.make("CartPole-v1") >>> env = LambdaRewardV0(env, lambda r: 2 * r + 1) >>> _ = env.reset() >>> _, rew, _, _, _ = env.step(0) >>> rew 3.0
- Parameters:
env (Env) – The environment to wrap
func – (Callable): The function to apply to reward
- class gymnasium.experimental.wrappers.ClipRewardV0(env: gym.Env[ObsType, ActType], min_reward: float | np.ndarray | None = None, max_reward: float | np.ndarray | None = None)[source]#
A wrapper that clips the rewards for an environment between an upper and lower bound.
Example
>>> import gymnasium as gym >>> from gymnasium.experimental.wrappers import ClipRewardV0 >>> env = gym.make("CartPole-v1") >>> env = ClipRewardV0(env, 0, 0.5) >>> _ = env.reset() >>> _, rew, _, _, _ = env.step(1) >>> rew 0.5
- Parameters:
env (Env) – The environment to wrap
min_reward (Union[float, np.ndarray]) – lower bound to apply
max_reward (Union[float, np.ndarray]) – higher bound to apply
- class gymnasium.experimental.wrappers.NormalizeRewardV1(env: Env[ObsType, ActType], gamma: float = 0.99, epsilon: float = 1e-8)[source]#
This wrapper will normalize immediate rewards s.t. their exponential moving average has a fixed variance.
The exponential moving average will have variance \((1 - \gamma)^2\).
The property _update_running_mean allows to freeze/continue the running mean calculation of the reward statistics. If True (default), the RunningMeanStd will get updated every time self.normalize() is called. If False, the calculated statistics are used but not updated anymore; this may be used during evaluation.
Note
In v0.27, NormalizeReward was updated as the forward discounted reward estimate was incorrect computed in Gym v0.25+. For more detail, read [#3154](https://github.com/openai/gym/pull/3152).
Note
The scaling depends on past trajectories and rewards will not be scaled correctly if the wrapper was newly instantiated or the policy was changed recently.
- Parameters:
env (env) – The environment to apply the wrapper
epsilon (float) – A stability parameter
gamma (float) – The discount factor that is used in the exponential moving average.
Other Wrappers#
- class gymnasium.experimental.wrappers.AutoresetV0(env: Env[ObsType, ActType])[source]#
A class for providing an automatic reset functionality for gymnasium environments when calling
self.step()
.- Parameters:
env (gym.Env) – The environment to apply the wrapper
- class gymnasium.experimental.wrappers.PassiveEnvCheckerV0(env: Env[ObsType, ActType])[source]#
A passive environment checker wrapper that surrounds the step, reset and render functions to check they follow the gymnasium API.
Initialises the wrapper with the environments, run the observation and action space tests.
- class gymnasium.experimental.wrappers.OrderEnforcingV0(env: Env[ObsType, ActType], disable_render_order_enforcing: bool = False)[source]#
A wrapper that will produce an error if
step()
is called before an initialreset()
.Example
>>> import gymnasium as gym >>> from gymnasium.experimental.wrappers import OrderEnforcingV0 >>> env = gym.make("CartPole-v1", render_mode="human") >>> env = OrderEnforcingV0(env) >>> env.step(0) Traceback (most recent call last): ... gymnasium.error.ResetNeeded: Cannot call env.step() before calling env.reset() >>> env.render() Traceback (most recent call last): ... gymnasium.error.ResetNeeded: Cannot call `env.render()` before calling `env.reset()`, if this is a intended action, set `disable_render_order_enforcing=True` on the OrderEnforcer wrapper. >>> _ = env.reset() >>> env.render() >>> _ = env.step(0) >>> env.close()
- Parameters:
env – The environment to wrap
disable_render_order_enforcing – If to disable render order enforcing
- class gymnasium.experimental.wrappers.RecordEpisodeStatisticsV0(env: gym.Env[ObsType, ActType], buffer_length: int | None = 100, stats_key: str = 'episode')[source]#
This wrapper will keep track of cumulative rewards and episode lengths.
At the end of an episode, the statistics of the episode will be added to
info
using the keyepisode
. If using a vectorized environment also the key_episode
is used which indicates whether the env at the respective index has the episode statistics.After the completion of an episode,
info
will look like this:>>> info = { ... "episode": { ... "r": "<cumulative reward>", ... "l": "<episode length>", ... "t": "<elapsed time since beginning of episode>" ... }, ... }
For a vectorized environments the output will be in the form of:
>>> infos = { ... "final_observation": "<array of length num-envs>", ... "_final_observation": "<boolean array of length num-envs>", ... "final_info": "<array of length num-envs>", ... "_final_info": "<boolean array of length num-envs>", ... "episode": { ... "r": "<array of cumulative reward>", ... "l": "<array of episode length>", ... "t": "<array of elapsed time since beginning of episode>" ... }, ... "_episode": "<boolean array of length num-envs>" ... }
Moreover, the most recent rewards and episode lengths are stored in buffers that can be accessed via
wrapped_env.return_queue
andwrapped_env.length_queue
respectively.- Variables:
episode_reward_buffer – The cumulative rewards of the last
deque_size
-many episodesepisode_length_buffer – The lengths of the last
deque_size
-many episodes
- Parameters:
env (Env) – The environment to apply the wrapper
buffer_length – The size of the buffers
return_queue
andlength_queue
stats_key – The info key for the episode statistics
Rendering Wrappers#
- class gymnasium.experimental.wrappers.RecordVideoV0(env: gym.Env[ObsType, ActType], video_folder: str, episode_trigger: Callable[[int], bool] | None = None, step_trigger: Callable[[int], bool] | None = None, video_length: int = 0, name_prefix: str = 'rl-video', fps: int | None = None, disable_logger: bool = False)[source]#
This wrapper records videos of rollouts.
Usually, you only want to record episodes intermittently, say every hundredth episode. To do this, you can specify
episode_trigger
orstep_trigger
. They should be functions returning a boolean that indicates whether a recording should be started at the current episode or step, respectively. If neitherepisode_trigger
norstep_trigger
is passed, a defaultepisode_trigger
will be employed, i.e. capped_cubic_video_schedule. This function starts a video at every episode that is a power of 3 until 1000 and then every 1000 episodes. By default, the recording will be stopped once reset is called. However, you can also create recordings of fixed length (possibly spanning several episodes) by passing a strictly positive value forvideo_length
.- Parameters:
env – The environment that will be wrapped
video_folder (str) – The folder where the recordings will be stored
episode_trigger – Function that accepts an integer and returns
True
iff a recording should be started at this episodestep_trigger – Function that accepts an integer and returns
True
iff a recording should be started at this stepvideo_length (int) – The length of recorded episodes. If 0, entire episodes are recorded. Otherwise, snippets of the specified length are captured
name_prefix (str) – Will be prepended to the filename of the recordings
fps (int) – The frame per second in the video. The default value is the one specified in the environment metadata. If the environment metadata doesn’t specify render_fps, the value 30 is used.
disable_logger (bool) – Whether to disable moviepy logger or not
- class gymnasium.experimental.wrappers.HumanRenderingV0(env: Env[ObsType, ActType])[source]#
Performs human rendering for an environment that only supports “rgb_array”rendering.
This wrapper is particularly useful when you have implemented an environment that can produce RGB images but haven’t implemented any code to render the images to the screen. If you want to use this wrapper with your environments, remember to specify
"render_fps"
in the metadata of your environment.The
render_mode
of the wrapped environment must be either'rgb_array'
or'rgb_array_list'
.Example
>>> import gymnasium as gym >>> from gymnasium.experimental.wrappers import HumanRenderingV0 >>> env = gym.make("LunarLander-v2", render_mode="rgb_array") >>> wrapped = HumanRenderingV0(env) >>> obs, _ = wrapped.reset() # This will start rendering to the screen
The wrapper can also be applied directly when the environment is instantiated, simply by passing
render_mode="human"
tomake
. The wrapper will only be applied if the environment does not implement human-rendering natively (i.e.render_mode
does not contain"human"
).>>> env = gym.make("phys2d/CartPole-v1", render_mode="human") # CartPoleJax-v1 doesn't implement human-rendering natively >>> obs, _ = env.reset() # This will start rendering to the screen
Warning: If the base environment uses
render_mode="rgb_array_list"
, its (i.e. the base environment’s) render method will always return an empty list:>>> env = gym.make("LunarLander-v2", render_mode="rgb_array_list") >>> wrapped = HumanRenderingV0(env) >>> obs, _ = wrapped.reset() >>> env.render() # env.render() will always return an empty list! []
- Parameters:
env – The environment that is being wrapped
- class gymnasium.experimental.wrappers.RenderCollectionV0(env: Env[ObsType, ActType], pop_frames: bool = True, reset_clean: bool = True)[source]#
Collect rendered frames of an environment such
render
returns alist[RenderedFrame]
.- Parameters:
env – The environment that is being wrapped
pop_frames (bool) – If true, clear the collection frames after
meth:render
is called. Default value isTrue
.reset_clean (bool) – If true, clear the collection frames when
meth:reset
is called. Default value isTrue
.
Environment data conversion#
- class gymnasium.experimental.wrappers.JaxToNumpyV0(env: Env[ObsType, ActType])[source]#
Wraps a jax environment so that it can be interacted with through numpy arrays.
Actions must be provided as numpy arrays and observations will be returned as numpy arrays.
Notes
The Jax To Numpy and Numpy to Jax conversion does not guarantee a roundtrip (jax -> numpy -> jax) and vice versa. The reason for this is jax does not support non-array values, therefore numpy
int_32(5) -> DeviceArray([5], dtype=jnp.int23)
- Parameters:
env – the jax environment to wrap
- class gymnasium.experimental.wrappers.JaxToTorchV0(env: gym.Env, device: Device | None = None)[source]#
Wraps a Jax-based environment so that it can be interacted with through PyTorch Tensors.
Actions must be provided as PyTorch Tensors and observations will be returned as PyTorch Tensors.
Note
For
rendered
this is returned as a NumPy array not a pytorch Tensor.- Parameters:
env – The Jax-based environment to wrap
device – The device the torch Tensors should be moved to
- class gymnasium.experimental.wrappers.NumpyToTorchV0(env: gym.Env, device: Device | None = None)[source]#
Wraps a numpy-based environment so that it can be interacted with through PyTorch Tensors.
Actions must be provided as PyTorch Tensors and observations will be returned as PyTorch Tensors.
Note
For
rendered
this is returned as a NumPy array not a pytorch Tensor.- Parameters:
env – The Jax-based environment to wrap
device – The device the torch Tensors should be moved to