Make and register#
Gymnasium allows users to automatically load environments, pre-wrapped with several important wrappers through the gymnasium.make()
function. To do this, the environment must be registered prior with gymnasium.register()
. To get the environment specifications for a registered environment, use gymnasium.spec()
and to print the whole registry, use gymnasium.pprint_registry()
.
- gymnasium.make(id: str | EnvSpec, max_episode_steps: int | None = None, disable_env_checker: bool | None = None, **kwargs: Any) Env [source]#
Creates an environment previously registered with
gymnasium.register()
or aEnvSpec
.To find all available environments use
gymnasium.envs.registry.keys()
for all valid ids.- Parameters:
id – A string for the environment id or a
EnvSpec
. Optionally if using a string, a module to import can be included, e.g.'module:Env-v0'
. This is equivalent to importing the module first to register the environment followed by making the environment.max_episode_steps – Maximum length of an episode, can override the registered
EnvSpec
max_episode_steps
with the value being passed togymnasium.wrappers.TimeLimit
. Usingmax_episode_steps=-1
will not apply the wrapper to the environment.disable_env_checker – If to add
gymnasium.wrappers.PassiveEnvChecker
,None
will default to theEnvSpec
disable_env_checker
value otherwise use this value will be used.kwargs – Additional arguments to pass to the environment constructor.
- Returns:
An instance of the environment with wrappers applied.
- Raises:
Error – If the
id
doesn’t exist in theregistry
- Changelogs:
v1.0.0 - autoreset and apply_api_compatibility was removed
- gymnasium.make_vec(id: str | EnvSpec, num_envs: int = 1, vectorization_mode: VectorizeMode | str | None = None, vector_kwargs: dict[str, Any] | None = None, wrappers: Sequence[Callable[[Env], Wrapper]] | None = None, **kwargs) gym.vector.VectorEnv [source]#
Create a vector environment according to the given ID.
To find all available environments use
gymnasium.pprint_registry()
orgymnasium.registry.keys()
for all valid ids. We refer to the Vector environment as the vectorizor while the environment being vectorized is the base or vectorized environment (vectorizor(vectorized env)
).- Parameters:
id – Name of the environment. Optionally, a module to import can be included, eg. ‘module:Env-v0’
num_envs – Number of environments to create
vectorization_mode – The vectorization method used, defaults to
None
such that if env id’ spec has avector_entry_point
(notNone
), this is first used otherwise defaults tosync
to use thegymnasium.vector.SyncVectorEnv
. Valid modes are"async"
,"sync"
or"vector_entry_point"
. Recommended to use theVectorizeMode
enum rather than strings.vector_kwargs – Additional arguments to pass to the vectorizor environment constructor, i.e.,
SyncVectorEnv(..., **vector_kwargs)
.wrappers – A sequence of wrapper functions to apply to the base environment. Can only be used in
"sync"
or"async"
mode.**kwargs – Additional arguments passed to the base environment constructor.
- Returns:
An instance of the environment.
- Raises:
Error – If the
id
doesn’t exist then an error is raised
- gymnasium.register(id: str, entry_point: EnvCreator | str | None = None, reward_threshold: float | None = None, nondeterministic: bool = False, max_episode_steps: int | None = None, order_enforce: bool = True, disable_env_checker: bool = False, additional_wrappers: tuple[WrapperSpec, ...] = (), vector_entry_point: VectorEnvCreator | str | None = None, kwargs: dict | None = None)[source]#
Registers an environment in gymnasium with an
id
to use withgymnasium.make()
with theentry_point
being a string or callable for creating the environment.The
id
parameter corresponds to the name of the environment, with the syntax as follows:[namespace/](env_name)[-v(version)]
wherenamespace
and-v(version)
is optional.It takes arbitrary keyword arguments, which are passed to the
EnvSpec
kwargs
parameter.- Parameters:
id – The environment id
entry_point – The entry point for creating the environment
reward_threshold – The reward threshold considered for an agent to have learnt the environment
nondeterministic – If the environment is nondeterministic (even with knowledge of the initial seed and all actions, the same state cannot be reached)
max_episode_steps – The maximum number of episodes steps before truncation. Used by the
gymnasium.wrappers.TimeLimit
wrapper if notNone
.order_enforce – If to enable the order enforcer wrapper to ensure users run functions in the correct order. If
True
, then thegymnasium.wrappers.OrderEnforcing
is applied to the environment.disable_env_checker – If to disable the
gymnasium.wrappers.PassiveEnvChecker
to the environment.additional_wrappers – Additional wrappers to apply the environment.
vector_entry_point – The entry point for creating the vector environment
kwargs – arbitrary keyword arguments which are passed to the environment constructor on initialisation.
- Changelogs:
v1.0.0 - autoreset and apply_api_compatibility parameter was removed
- gymnasium.spec(env_id: str) EnvSpec [source]#
Retrieve the
EnvSpec
for the environment id from theregistry
.- Parameters:
env_id – The environment id with the expected format of
[(namespace)/]id[-v(version)]
- Returns:
The environment spec if it exists
- Raises:
Error – If the environment id doesn’t exist
- gymnasium.pprint_registry(print_registry: dict[str, EnvSpec] = registry, *, num_cols: int = 3, exclude_namespaces: list[str] | None = None, disable_print: bool = False) str | None [source]#
Pretty prints all environments in the
registry
.Note
All arguments are keyword only
- Parameters:
print_registry – Environment registry to be printed. By default,
registry
num_cols – Number of columns to arrange environments in, for display.
exclude_namespaces – A list of namespaces to be excluded from printing. Helpful if only ALE environments are wanted.
disable_print – Whether to return a string of all the namespaces and environment IDs or to print the string to console.
Core variables#
- class gymnasium.envs.registration.EnvSpec(id: str, entry_point: EnvCreator | str | None = None, reward_threshold: float | None = None, nondeterministic: bool = False, max_episode_steps: int | None = None, order_enforce: bool = True, disable_env_checker: bool = False, kwargs: dict = <factory>, additional_wrappers: tuple[WrapperSpec, ...] = <factory>, vector_entry_point: VectorEnvCreator | str | None = None)[source]#
A specification for creating environments with
gymnasium.make()
.id: The string used to create the environment with
gymnasium.make()
entry_point: A string for the environment location,
(import path):(environment name)
or a function that creates the environment.reward_threshold: The reward threshold for completing the environment.
nondeterministic: If the observation of an environment cannot be repeated with the same initial state, random number generator state and actions.
max_episode_steps: The max number of steps that the environment can take before truncation
order_enforce: If to enforce the order of
gymnasium.Env.reset()
beforegymnasium.Env.step()
andgymnasium.Env.render()
functionsdisable_env_checker: If to disable the environment checker wrapper in
gymnasium.make()
, by default False (runs the environment checker)kwargs: Additional keyword arguments passed to the environment during initialisation
additional_wrappers: A tuple of additional wrappers applied to the environment (WrapperSpec)
vector_entry_point: The location of the vectorized environment to create from
- Changelogs:
v1.0.0 - Autoreset attribute removed
- class gymnasium.envs.registration.WrapperSpec(name: str, entry_point: str, kwargs: dict[str, Any] | None)[source]#
A specification for recording wrapper configs.
name: The name of the wrapper.
entry_point: The location of the wrapper to create from.
kwargs: Additional keyword arguments passed to the wrapper. If the wrapper doesn’t inherit from EzPickle then this is
None
- gymnasium.envs.registration.registry#
The Global registry for gymnasium which is where environment specifications are stored by
gymnasium.register()
and from whichgymnasium.make()
is used to create environments.
- gymnasium.envs.registration.current_namespace#
The current namespace when creating or registering environments. This is by default
None
by withnamespace()
this can be modified to automatically set the environment id namespace.
Additional functions#
- gymnasium.envs.registration.get_env_id(ns: str | None, name: str, version: int | None) str [source]#
Get the full env ID given a name and (optional) version and namespace. Inverse of
parse_env_id()
.- Parameters:
ns – The environment namespace
name – The environment name
version – The environment version
- Returns:
The environment id
- gymnasium.envs.registration.parse_env_id(env_id: str) tuple[str | None, str, int | None] [source]#
Parse environment ID string format -
[namespace/](env-name)[-v(version)]
where the namespace and version are optional.- Parameters:
env_id – The environment id to parse
- Returns:
A tuple of environment namespace, environment name and version number
- Raises:
Error – If the environment id is not valid environment regex
- gymnasium.envs.registration.find_highest_version(ns: str | None, name: str) int | None [source]#
Finds the highest registered version of the environment given the namespace and name in the registry.
- Parameters:
ns – The environment namespace
name – The environment name (id)
- Returns:
The highest version of an environment with matching namespace and name, otherwise ``None`` is returned.
- gymnasium.envs.registration.namespace(ns: str)[source]#
Context manager for modifying the current namespace.
- gymnasium.envs.registration.load_env_creator(name: str) EnvCreator | VectorEnvCreator [source]#
Loads an environment with name of style
"(import path):(environment name)"
and returns the environment creation function, normally the environment class type.- Parameters:
name – The environment name
- Returns:
The environment constructor for the given environment name.