"""A collection of common wrappers.
* ``TimeLimit`` - Provides a time limit on the number of steps for an environment before it truncates
* ``Autoreset`` - Auto-resets the environment
* ``PassiveEnvChecker`` - Passive environment checker that does not modify any environment data
* ``OrderEnforcing`` - Enforces the order of function calls to environments
* ``RecordEpisodeStatistics`` - Records the episode statistics
"""
from __future__ import annotations
import time
from collections import deque
from copy import deepcopy
from typing import TYPE_CHECKING, Any, SupportsFloat
import gymnasium as gym
from gymnasium import logger
from gymnasium.core import ActType, ObsType, RenderFrame, WrapperObsType
from gymnasium.error import ResetNeeded
from gymnasium.utils.passive_env_checker import (
check_action_space,
check_observation_space,
env_render_passive_checker,
env_reset_passive_checker,
env_step_passive_checker,
)
if TYPE_CHECKING:
from gymnasium.envs.registration import EnvSpec
__all__ = [
"TimeLimit",
"Autoreset",
"PassiveEnvChecker",
"OrderEnforcing",
"RecordEpisodeStatistics",
]
[docs]
class TimeLimit(
gym.Wrapper[ObsType, ActType, ObsType, ActType], gym.utils.RecordConstructorArgs
):
"""Limits the number of steps for an environment through truncating the environment if a maximum number of timesteps is exceeded.
If a truncation is not defined inside the environment itself, this is the only place that the truncation signal is issued.
Critically, this is different from the `terminated` signal that originates from the underlying environment as part of the MDP.
No vector wrapper exists.
Example using the TimeLimit wrapper:
>>> from gymnasium.wrappers import TimeLimit
>>> from gymnasium.envs.classic_control import CartPoleEnv
>>> spec = gym.spec("CartPole-v1")
>>> spec.max_episode_steps
500
>>> env = gym.make("CartPole-v1")
>>> env # TimeLimit is included within the environment stack
<TimeLimit<OrderEnforcing<PassiveEnvChecker<CartPoleEnv<CartPole-v1>>>>>
>>> env.spec # doctest: +ELLIPSIS
EnvSpec(id='CartPole-v1', ..., max_episode_steps=500, ...)
>>> env = gym.make("CartPole-v1", max_episode_steps=3)
>>> env.spec # doctest: +ELLIPSIS
EnvSpec(id='CartPole-v1', ..., max_episode_steps=3, ...)
>>> env = TimeLimit(CartPoleEnv(), max_episode_steps=10)
>>> env
<TimeLimit<CartPoleEnv instance>>
Example of `TimeLimit` determining the episode step
>>> env = gym.make("CartPole-v1", max_episode_steps=3)
>>> _ = env.reset(seed=123)
>>> _ = env.action_space.seed(123)
>>> _, _, terminated, truncated, _ = env.step(env.action_space.sample())
>>> terminated, truncated
(False, False)
>>> _, _, terminated, truncated, _ = env.step(env.action_space.sample())
>>> terminated, truncated
(False, False)
>>> _, _, terminated, truncated, _ = env.step(env.action_space.sample())
>>> terminated, truncated
(False, True)
Change logs:
* v0.10.6 - Initially added
* v0.25.0 - With the step API update, the termination and truncation signal is returned separately.
"""
def __init__(
self,
env: gym.Env,
max_episode_steps: int,
):
"""Initializes the :class:`TimeLimit` wrapper with an environment and the number of steps after which truncation will occur.
Args:
env: The environment to apply the wrapper
max_episode_steps: the environment step after which the episode is truncated (``elapsed >= max_episode_steps``)
"""
assert (
isinstance(max_episode_steps, int) and max_episode_steps > 0
), f"Expect the `max_episode_steps` to be positive, actually: {max_episode_steps}"
gym.utils.RecordConstructorArgs.__init__(
self, max_episode_steps=max_episode_steps
)
gym.Wrapper.__init__(self, env)
self._max_episode_steps = max_episode_steps
self._elapsed_steps = None
def step(
self, action: ActType
) -> tuple[ObsType, SupportsFloat, bool, bool, dict[str, Any]]:
"""Steps through the environment and if the number of steps elapsed exceeds ``max_episode_steps`` then truncate.
Args:
action: The environment step action
Returns:
The environment step ``(observation, reward, terminated, truncated, info)`` with `truncated=True`
if the number of steps elapsed >= max episode steps
"""
observation, reward, terminated, truncated, info = self.env.step(action)
self._elapsed_steps += 1
if self._elapsed_steps >= self._max_episode_steps:
truncated = True
return observation, reward, terminated, truncated, info
def reset(
self, *, seed: int | None = None, options: dict[str, Any] | None = None
) -> tuple[ObsType, dict[str, Any]]:
"""Resets the environment with :param:`**kwargs` and sets the number of steps elapsed to zero.
Args:
seed: Seed for the environment
options: Options for the environment
Returns:
The reset environment
"""
self._elapsed_steps = 0
return super().reset(seed=seed, options=options)
@property
def spec(self) -> EnvSpec | None:
"""Modifies the environment spec to include the `max_episode_steps=self._max_episode_steps`."""
if self._cached_spec is not None:
return self._cached_spec
env_spec = self.env.spec
if env_spec is not None:
try:
env_spec = deepcopy(env_spec)
env_spec.max_episode_steps = self._max_episode_steps
except Exception as e:
gym.logger.warn(
f"An exception occurred ({e}) while copying the environment spec={env_spec}"
)
return None
self._cached_spec = env_spec
return env_spec
[docs]
class Autoreset(
gym.Wrapper[ObsType, ActType, ObsType, ActType], gym.utils.RecordConstructorArgs
):
"""The wrapped environment is automatically reset when a terminated or truncated state is reached.
This follows the vector autoreset api where on the step after an episode terminates or truncated then the environment is reset.
Change logs:
* v0.24.0 - Initially added as `AutoResetWrapper`
* v1.0.0 - renamed to `Autoreset` and autoreset order was changed to reset on the step after the environment terminates or truncates. As a result, `"final_observation"` and `"final_info"` is removed.
"""
def __init__(self, env: gym.Env):
"""A class for providing an automatic reset functionality for gymnasium environments when calling :meth:`self.step`.
Args:
env (gym.Env): The environment to apply the wrapper
"""
gym.utils.RecordConstructorArgs.__init__(self)
gym.Wrapper.__init__(self, env)
self.autoreset = False
def reset(
self, *, seed: int | None = None, options: dict[str, Any] | None = None
) -> tuple[WrapperObsType, dict[str, Any]]:
"""Resets the environment and sets autoreset to False preventing."""
self.autoreset = False
return super().reset(seed=seed, options=options)
def step(
self, action: ActType
) -> tuple[ObsType, SupportsFloat, bool, bool, dict[str, Any]]:
"""Steps through the environment with action and resets the environment if a terminated or truncated signal is encountered.
Args:
action: The action to take
Returns:
The autoreset environment :meth:`step`
"""
if self.autoreset:
obs, info = self.env.reset()
reward, terminated, truncated = 0.0, False, False
else:
obs, reward, terminated, truncated, info = self.env.step(action)
self.autoreset = terminated or truncated
return obs, reward, terminated, truncated, info
[docs]
class PassiveEnvChecker(
gym.Wrapper[ObsType, ActType, ObsType, ActType], gym.utils.RecordConstructorArgs
):
"""A passive wrapper that surrounds the ``step``, ``reset`` and ``render`` functions to check they follow Gymnasium's API.
This wrapper is automatically applied during make and can be disabled with `disable_env_checker`.
No vector version of the wrapper exists.
Example:
>>> import gymnasium as gym
>>> env = gym.make("CartPole-v1")
>>> env
<TimeLimit<OrderEnforcing<PassiveEnvChecker<CartPoleEnv<CartPole-v1>>>>>
>>> env = gym.make("CartPole-v1", disable_env_checker=True)
>>> env
<TimeLimit<OrderEnforcing<CartPoleEnv<CartPole-v1>>>>
Change logs:
* v0.24.1 - Initially added however broken in several ways
* v0.25.0 - Bugs was all fixed
* v0.29.0 - Removed warnings for infinite bounds for Box observation and action spaces and inregular bound shapes
"""
def __init__(self, env: gym.Env[ObsType, ActType]):
"""Initialises the wrapper with the environments, run the observation and action space tests."""
gym.utils.RecordConstructorArgs.__init__(self)
gym.Wrapper.__init__(self, env)
if not isinstance(env, gym.Env):
if str(env.__class__.__base__) == "<class 'gym.core.Env'>":
raise TypeError(
"Gym is incompatible with Gymnasium, please update the environment class to `gymnasium.Env`. "
"See https://gymnasium.farama.org/introduction/create_custom_env/ for more info."
)
else:
raise TypeError(
f"The environment must inherit from the gymnasium.Env class, actual class: {type(env)}. "
"See https://gymnasium.farama.org/introduction/create_custom_env/ for more info."
)
if not hasattr(env, "action_space"):
raise AttributeError(
"The environment must specify an action space. https://gymnasium.farama.org/introduction/create_custom_env/"
)
check_action_space(env.action_space)
if not hasattr(env, "observation_space"):
raise AttributeError(
"The environment must specify an observation space. https://gymnasium.farama.org/introduction/create_custom_env/"
)
check_observation_space(env.observation_space)
self.checked_reset: bool = False
self.checked_step: bool = False
self.checked_render: bool = False
self.close_called: bool = False
def step(
self, action: ActType
) -> tuple[ObsType, SupportsFloat, bool, bool, dict[str, Any]]:
"""Steps through the environment that on the first call will run the `passive_env_step_check`."""
if self.checked_step is False:
self.checked_step = True
return env_step_passive_checker(self.env, action)
else:
return self.env.step(action)
def reset(
self, *, seed: int | None = None, options: dict[str, Any] | None = None
) -> tuple[ObsType, dict[str, Any]]:
"""Resets the environment that on the first call will run the `passive_env_reset_check`."""
if self.checked_reset is False:
self.checked_reset = True
return env_reset_passive_checker(self.env, seed=seed, options=options)
else:
return self.env.reset(seed=seed, options=options)
def render(self) -> RenderFrame | list[RenderFrame] | None:
"""Renders the environment that on the first call will run the `passive_env_render_check`."""
if self.checked_render is False:
self.checked_render = True
return env_render_passive_checker(self.env)
else:
return self.env.render()
@property
def spec(self) -> EnvSpec | None:
"""Modifies the environment spec to such that `disable_env_checker=False`."""
if self._cached_spec is not None:
return self._cached_spec
env_spec = self.env.spec
if env_spec is not None:
try:
env_spec = deepcopy(env_spec)
env_spec.disable_env_checker = False
except Exception as e:
gym.logger.warn(
f"An exception occurred ({e}) while copying the environment spec={env_spec}"
)
return None
self._cached_spec = env_spec
return env_spec
def close(self):
"""Warns if calling close on a closed environment fails."""
if not self.close_called:
self.close_called = True
return self.env.close()
else:
try:
return self.env.close()
except Exception as e:
logger.warn(
"Calling `env.close()` on the closed environment should be allowed, but it raised the following exception."
)
raise e
[docs]
class OrderEnforcing(
gym.Wrapper[ObsType, ActType, ObsType, ActType], gym.utils.RecordConstructorArgs
):
"""Will produce an error if ``step`` or ``render`` is called before ``reset``.
No vector version of the wrapper exists.
Example:
>>> import gymnasium as gym
>>> from gymnasium.wrappers import OrderEnforcing
>>> env = gym.make("CartPole-v1", render_mode="human")
>>> env = OrderEnforcing(env)
>>> env.step(0)
Traceback (most recent call last):
...
gymnasium.error.ResetNeeded: Cannot call env.step() before calling env.reset()
>>> env.render()
Traceback (most recent call last):
...
gymnasium.error.ResetNeeded: Cannot call `env.render()` before calling `env.reset()`, if this is an intended action, set `disable_render_order_enforcing=True` on the OrderEnforcer wrapper.
>>> _ = env.reset()
>>> env.render()
>>> _ = env.step(0)
>>> env.close()
Change logs:
* v0.22.0 - Initially added
* v0.24.0 - Added order enforcing for the render function
"""
def __init__(
self,
env: gym.Env[ObsType, ActType],
disable_render_order_enforcing: bool = False,
):
"""A wrapper that will produce an error if :meth:`step` is called before an initial :meth:`reset`.
Args:
env: The environment to wrap
disable_render_order_enforcing: If to disable render order enforcing
"""
gym.utils.RecordConstructorArgs.__init__(
self, disable_render_order_enforcing=disable_render_order_enforcing
)
gym.Wrapper.__init__(self, env)
self._has_reset: bool = False
self._disable_render_order_enforcing: bool = disable_render_order_enforcing
def step(self, action: ActType) -> tuple[ObsType, SupportsFloat, bool, bool, dict]:
"""Steps through the environment."""
if not self._has_reset:
raise ResetNeeded("Cannot call env.step() before calling env.reset()")
return super().step(action)
def reset(
self, *, seed: int | None = None, options: dict[str, Any] | None = None
) -> tuple[ObsType, dict[str, Any]]:
"""Resets the environment with `kwargs`."""
self._has_reset = True
return super().reset(seed=seed, options=options)
def render(self) -> RenderFrame | list[RenderFrame] | None:
"""Renders the environment with `kwargs`."""
if not self._disable_render_order_enforcing and not self._has_reset:
raise ResetNeeded(
"Cannot call `env.render()` before calling `env.reset()`, if this is an intended action, "
"set `disable_render_order_enforcing=True` on the OrderEnforcer wrapper."
)
return super().render()
@property
def has_reset(self):
"""Returns if the environment has been reset before."""
return self._has_reset
@property
def spec(self) -> EnvSpec | None:
"""Modifies the environment spec to add the `order_enforce=True`."""
if self._cached_spec is not None:
return self._cached_spec
env_spec = self.env.spec
if env_spec is not None:
try:
env_spec = deepcopy(env_spec)
env_spec.order_enforce = True
except Exception as e:
gym.logger.warn(
f"An exception occurred ({e}) while copying the environment spec={env_spec}"
)
return None
self._cached_spec = env_spec
return env_spec
[docs]
class RecordEpisodeStatistics(
gym.Wrapper[ObsType, ActType, ObsType, ActType], gym.utils.RecordConstructorArgs
):
"""This wrapper will keep track of cumulative rewards and episode lengths.
At the end of an episode, the statistics of the episode will be added to ``info``
using the key ``episode``. If using a vectorized environment also the key
``_episode`` is used which indicates whether the env at the respective index has
the episode statistics.
A vector version of the wrapper exists, :class:`gymnasium.wrappers.vector.RecordEpisodeStatistics`.
After the completion of an episode, ``info`` will look like this::
>>> info = {
... "episode": {
... "r": "<cumulative reward>",
... "l": "<episode length>",
... "t": "<elapsed time since beginning of episode>"
... },
... }
For a vectorized environments the output will be in the form of::
>>> infos = {
... "episode": {
... "r": "<array of cumulative reward>",
... "l": "<array of episode length>",
... "t": "<array of elapsed time since beginning of episode>"
... },
... "_episode": "<boolean array of length num-envs>"
... }
Moreover, the most recent rewards and episode lengths are stored in buffers that can be accessed via
:attr:`wrapped_env.return_queue` and :attr:`wrapped_env.length_queue` respectively.
Attributes:
* time_queue: The time length of the last ``deque_size``-many episodes
* return_queue: The cumulative rewards of the last ``deque_size``-many episodes
* length_queue: The lengths of the last ``deque_size``-many episodes
Change logs:
* v0.15.4 - Initially added
* v1.0.0 - Removed vector environment support (see :class:`gymnasium.wrappers.vector.RecordEpisodeStatistics`) and add attribute ``time_queue``
"""
def __init__(
self,
env: gym.Env[ObsType, ActType],
buffer_length: int = 100,
stats_key: str = "episode",
):
"""This wrapper will keep track of cumulative rewards and episode lengths.
Args:
env (Env): The environment to apply the wrapper
buffer_length: The size of the buffers :attr:`return_queue`, :attr:`length_queue` and :attr:`time_queue`
stats_key: The info key for the episode statistics
"""
gym.utils.RecordConstructorArgs.__init__(self)
gym.Wrapper.__init__(self, env)
self._stats_key = stats_key
self.episode_count = 0
self.episode_start_time: float = -1
self.episode_returns: float = 0.0
self.episode_lengths: int = 0
self.time_queue: deque[float] = deque(maxlen=buffer_length)
self.return_queue: deque[float] = deque(maxlen=buffer_length)
self.length_queue: deque[int] = deque(maxlen=buffer_length)
def step(
self, action: ActType
) -> tuple[ObsType, SupportsFloat, bool, bool, dict[str, Any]]:
"""Steps through the environment, recording the episode statistics."""
obs, reward, terminated, truncated, info = super().step(action)
self.episode_returns += reward
self.episode_lengths += 1
if terminated or truncated:
assert self._stats_key not in info
episode_time_length = round(
time.perf_counter() - self.episode_start_time, 6
)
info[self._stats_key] = {
"r": self.episode_returns,
"l": self.episode_lengths,
"t": episode_time_length,
}
self.time_queue.append(episode_time_length)
self.return_queue.append(self.episode_returns)
self.length_queue.append(self.episode_lengths)
self.episode_count += 1
self.episode_start_time = time.perf_counter()
return obs, reward, terminated, truncated, info
def reset(
self, *, seed: int | None = None, options: dict[str, Any] | None = None
) -> tuple[ObsType, dict[str, Any]]:
"""Resets the environment using seed and options and resets the episode rewards and lengths."""
obs, info = super().reset(seed=seed, options=options)
self.episode_start_time = time.perf_counter()
self.episode_returns = 0.0
self.episode_lengths = 0
return obs, info