Source code for gymnasium.utils.step_api_compatibility

"""Contains methods for step compatibility, from old-to-new and new-to-old API."""

from __future__ import annotations

from typing import SupportsFloat, Tuple, Union

import numpy as np

from gymnasium.core import ObsType


DoneStepType = Tuple[
    Union[ObsType, np.ndarray],
    Union[SupportsFloat, np.ndarray],
    Union[bool, np.ndarray],
    Union[dict, list],
]

TerminatedTruncatedStepType = Tuple[
    Union[ObsType, np.ndarray],
    Union[SupportsFloat, np.ndarray],
    Union[bool, np.ndarray],
    Union[bool, np.ndarray],
    Union[dict, list],
]


[docs] def convert_to_terminated_truncated_step_api( step_returns: DoneStepType | TerminatedTruncatedStepType, is_vector_env=False ) -> TerminatedTruncatedStepType: """Function to transform step returns to new step API irrespective of input API. .. py:currentmodule:: gymnasium.Env Args: step_returns (tuple): Items returned by :meth:`step`. Can be ``(obs, rew, done, info)`` or ``(obs, rew, terminated, truncated, info)`` is_vector_env (bool): Whether the ``step_returns`` are from a vector environment """ if len(step_returns) == 5: return step_returns else: assert len(step_returns) == 4 observations, rewards, dones, infos = step_returns # Cases to handle - info single env / info vector env (list) / info vector env (dict) if is_vector_env is False: truncated = infos.pop("TimeLimit.truncated", False) return ( observations, rewards, dones and not truncated, dones and truncated, infos, ) elif isinstance(infos, list): truncated = np.array( [info.pop("TimeLimit.truncated", False) for info in infos] ) return ( observations, rewards, np.logical_and(dones, np.logical_not(truncated)), np.logical_and(dones, truncated), infos, ) elif isinstance(infos, dict): num_envs = len(dones) truncated = infos.pop("TimeLimit.truncated", np.zeros(num_envs, dtype=bool)) return ( observations, rewards, np.logical_and(dones, np.logical_not(truncated)), np.logical_and(dones, truncated), infos, ) else: raise TypeError( f"Unexpected value of infos, as is_vector_envs=False, expects `info` to be a list or dict, actual type: {type(infos)}" )
[docs] def convert_to_done_step_api( step_returns: TerminatedTruncatedStepType | DoneStepType, is_vector_env: bool = False, ) -> DoneStepType: """Function to transform step returns to old step API irrespective of input API. .. py:currentmodule:: gymnasium.Env Args: step_returns (tuple): Items returned by :meth:`step`. Can be ``(obs, rew, done, info)`` or ``(obs, rew, terminated, truncated, info)`` is_vector_env (bool): Whether the ``step_returns`` are from a vector environment """ if len(step_returns) == 4: return step_returns else: assert len(step_returns) == 5 observations, rewards, terminated, truncated, infos = step_returns # Cases to handle - info single env / info vector env (list) / info vector env (dict) if is_vector_env is False: if truncated or terminated: infos["TimeLimit.truncated"] = truncated and not terminated return ( observations, rewards, terminated or truncated, infos, ) elif isinstance(infos, list): for info, env_truncated, env_terminated in zip( infos, truncated, terminated ): if env_truncated or env_terminated: info["TimeLimit.truncated"] = env_truncated and not env_terminated return ( observations, rewards, np.logical_or(terminated, truncated), infos, ) elif isinstance(infos, dict): if np.logical_or(np.any(truncated), np.any(terminated)): infos["TimeLimit.truncated"] = np.logical_and( truncated, np.logical_not(terminated) ) return ( observations, rewards, np.logical_or(terminated, truncated), infos, ) else: raise TypeError( f"Unexpected value of infos, as is_vector_envs=False, expects `info` to be a list or dict, actual type: {type(infos)}" )
[docs] def step_api_compatibility( step_returns: TerminatedTruncatedStepType | DoneStepType, output_truncation_bool: bool = True, is_vector_env: bool = False, ) -> TerminatedTruncatedStepType | DoneStepType: """Function to transform step returns to the API specified by ``output_truncation_bool``. .. py:currentmodule:: gymnasium.Env Done (old) step API refers to :meth:`step` method returning ``(observation, reward, done, info)`` Terminated Truncated (new) step API refers to :meth:`step` method returning ``(observation, reward, terminated, truncated, info)`` (Refer to docs for details on the API change) Args: step_returns (tuple): Items returned by :meth:`step`. Can be ``(obs, rew, done, info)`` or ``(obs, rew, terminated, truncated, info)`` output_truncation_bool (bool): Whether the output should return two booleans (new API) or one (old) (``True`` by default) is_vector_env (bool): Whether the ``step_returns`` are from a vector environment Returns: step_returns (tuple): Depending on ``output_truncation_bool``, it can return ``(obs, rew, done, info)`` or ``(obs, rew, terminated, truncated, info)`` Example: This function can be used to ensure compatibility in step interfaces with conflicting API. E.g. if env is written in old API, wrapper is written in new API, and the final step output is desired to be in old API. >>> import gymnasium as gym >>> env = gym.make("CartPole-v0") >>> _, _ = env.reset() >>> obs, reward, done, info = step_api_compatibility(env.step(0), output_truncation_bool=False) >>> obs, reward, terminated, truncated, info = step_api_compatibility(env.step(0), output_truncation_bool=True) >>> vec_env = gym.make_vec("CartPole-v0", vectorization_mode="sync") >>> _, _ = vec_env.reset() >>> obs, rewards, dones, infos = step_api_compatibility(vec_env.step([0]), is_vector_env=True, output_truncation_bool=False) >>> obs, rewards, terminations, truncations, infos = step_api_compatibility(vec_env.step([0]), is_vector_env=True, output_truncation_bool=True) """ if output_truncation_bool: return convert_to_terminated_truncated_step_api(step_returns, is_vector_env) else: return convert_to_done_step_api(step_returns, is_vector_env)