"""Implementation of a space consisting of finitely many elements."""
from __future__ import annotations
from typing import Any, Iterable, Mapping, Sequence
import numpy as np
from gymnasium.spaces.space import MaskNDArray, Space
[docs]
class Discrete(Space[np.int64]):
r"""A space consisting of finitely many elements.
This class represents a finite subset of integers, more specifically a set of the form :math:`\{ a, a+1, \dots, a+n-1 \}`.
Example:
>>> from gymnasium.spaces import Discrete
>>> observation_space = Discrete(2, seed=42) # {0, 1}
>>> observation_space.sample()
np.int64(0)
>>> observation_space = Discrete(3, start=-1, seed=42) # {-1, 0, 1}
>>> observation_space.sample()
np.int64(-1)
"""
def __init__(
self,
n: int | np.integer[Any],
seed: int | np.random.Generator | None = None,
start: int | np.integer[Any] = 0,
):
r"""Constructor of :class:`Discrete` space.
This will construct the space :math:`\{\text{start}, ..., \text{start} + n - 1\}`.
Args:
n (int): The number of elements of this space.
seed: Optionally, you can use this argument to seed the RNG that is used to sample from the ``Dict`` space.
start (int): The smallest element of this space.
"""
assert np.issubdtype(
type(n), np.integer
), f"Expects `n` to be an integer, actual dtype: {type(n)}"
assert n > 0, "n (counts) have to be positive"
assert np.issubdtype(
type(start), np.integer
), f"Expects `start` to be an integer, actual type: {type(start)}"
self.n = np.int64(n)
self.start = np.int64(start)
super().__init__((), np.int64, seed)
@property
def is_np_flattenable(self):
"""Checks whether this space can be flattened to a :class:`spaces.Box`."""
return True
[docs]
def sample(self, mask: MaskNDArray | None = None) -> np.int64:
"""Generates a single random sample from this space.
A sample will be chosen uniformly at random with the mask if provided
Args:
mask: An optional mask for if an action can be selected.
Expected `np.ndarray` of shape ``(n,)`` and dtype ``np.int8`` where ``1`` represents valid actions and ``0`` invalid / infeasible actions.
If there are no possible actions (i.e. ``np.all(mask == 0)``) then ``space.start`` will be returned.
Returns:
A sampled integer from the space
"""
if mask is not None:
assert isinstance(
mask, np.ndarray
), f"The expected type of the mask is np.ndarray, actual type: {type(mask)}"
assert (
mask.dtype == np.int8
), f"The expected dtype of the mask is np.int8, actual dtype: {mask.dtype}"
assert mask.shape == (
self.n,
), f"The expected shape of the mask is {(self.n,)}, actual shape: {mask.shape}"
valid_action_mask = mask == 1
assert np.all(
np.logical_or(mask == 0, valid_action_mask)
), f"All values of a mask should be 0 or 1, actual values: {mask}"
if np.any(valid_action_mask):
return self.start + self.np_random.choice(
np.where(valid_action_mask)[0]
)
else:
return self.start
return self.start + self.np_random.integers(self.n)
def contains(self, x: Any) -> bool:
"""Return boolean specifying if x is a valid member of this space."""
if isinstance(x, int):
as_int64 = np.int64(x)
elif isinstance(x, (np.generic, np.ndarray)) and (
np.issubdtype(x.dtype, np.integer) and x.shape == ()
):
as_int64 = np.int64(x)
else:
return False
return bool(self.start <= as_int64 < self.start + self.n)
def __repr__(self) -> str:
"""Gives a string representation of this space."""
if self.start != 0:
return f"Discrete({self.n}, start={self.start})"
return f"Discrete({self.n})"
def __eq__(self, other: Any) -> bool:
"""Check whether ``other`` is equivalent to this instance."""
return (
isinstance(other, Discrete)
and self.n == other.n
and self.start == other.start
)
def __setstate__(self, state: Iterable[tuple[str, Any]] | Mapping[str, Any]):
"""Used when loading a pickled space.
This method has to be implemented explicitly to allow for loading of legacy states.
Args:
state: The new state
"""
# Don't mutate the original state
state = dict(state)
# Allow for loading of legacy states.
# See https://github.com/openai/gym/pull/2470
if "start" not in state:
state["start"] = np.int64(0)
super().__setstate__(state)
def to_jsonable(self, sample_n: Sequence[np.int64]) -> list[int]:
"""Converts a list of samples to a list of ints."""
return [int(x) for x in sample_n]
def from_jsonable(self, sample_n: list[int]) -> list[np.int64]:
"""Converts a list of json samples to a list of np.int64."""
return [np.int64(x) for x in sample_n]