SyncVectorEnv¶
- class gymnasium.vector.SyncVectorEnv(env_fns: Iterator[Callable[[], Env]] | Sequence[Callable[[], Env]], copy: bool = True, observation_mode: str | Space = 'same', autoreset_mode: str | AutoresetMode = AutoresetMode.NEXT_STEP)[source]¶
Vectorized environment that serially runs multiple environments.
Example
>>> import gymnasium as gym >>> envs = gym.make_vec("Pendulum-v1", num_envs=2, vectorization_mode="sync") >>> envs SyncVectorEnv(Pendulum-v1, num_envs=2) >>> envs = gym.vector.SyncVectorEnv([ ... lambda: gym.make("Pendulum-v1", g=9.81), ... lambda: gym.make("Pendulum-v1", g=1.62) ... ]) >>> envs SyncVectorEnv(num_envs=2) >>> obs, infos = envs.reset(seed=42) >>> obs array([[-0.14995256, 0.9886932 , -0.12224312], [ 0.5760367 , 0.8174238 , -0.91244936]], dtype=float32) >>> infos {} >>> _ = envs.action_space.seed(42) >>> actions = envs.action_space.sample() >>> obs, rewards, terminates, truncates, infos = envs.step(actions) >>> obs array([[-0.1878752 , 0.98219293, 0.7695615 ], [ 0.6102389 , 0.79221743, -0.8498053 ]], dtype=float32) >>> rewards array([-2.96562607, -0.99902063]) >>> terminates array([False, False]) >>> truncates array([False, False]) >>> infos {} >>> envs.close()
- Parameters:
env_fns – iterable of callable functions that create the environments.
copy – If
True
, then thereset()
andstep()
methods return a copy of the observations.observation_mode – Defines how environment observation spaces should be batched. ‘same’ defines that there should be
n
copies of identical spaces. ‘different’ defines that there can be multiple observation spaces with the same length but different high/low values batched together. Passing aSpace
object allows the user to set some custom observation space mode not covered by ‘same’ or ‘different.’autoreset_mode – The Autoreset Mode used, see todo for more details.
- Raises:
RuntimeError – If the observation space of some sub-environment does not match observation_space (or, by default, the observation space of the first sub-environment).
- reset(*, seed: int | list[int] | None = None, options: dict[str, Any] | None = None) tuple[ObsType, dict[str, Any]] [source]¶
Resets each of the sub-environments and concatenate the results together.
- Parameters:
seed – Seeds used to reset the sub-environments, either *
None
- random seeds for all environment *int
-[seed, seed+1, ..., seed+n]
* List of ints -[1, 2, 3, ..., n]
options – Option information used for each sub-environment
- Returns:
Concatenated observations and info from each sub-environment
- step(actions: ActType) tuple[ObsType, ArrayType, ArrayType, ArrayType, dict[str, Any]] [source]¶
Steps through each of the environments returning the batched results.
- Returns:
The batched environment step results
- close(**kwargs: Any)¶
Close all parallel environments and release resources.
It also closes all the existing image viewers, then calls
close_extras()
and setclosed
asTrue
.Warning
This function itself does not close the environments, it should be handled in
close_extras()
. This is generic for both synchronous and asynchronous vectorized environments.Note
This will be automatically called when garbage collected or program exited.
- Parameters:
**kwargs – Keyword arguments passed to
close_extras()
- call(name: str, *args: Any, **kwargs: Any) tuple[Any, ...] [source]¶
Calls a sub-environment method with name and applies args and kwargs.
- Parameters:
name – The method name
*args – The method args
**kwargs – The method kwargs
- Returns:
Tuple of results
- get_attr(name: str) tuple[Any, ...] [source]¶
Get a property from each parallel environment.
- Parameters:
name (str) – Name of the property to get from each individual environment.
- Returns:
The property with name
- set_attr(name: str, values: list[Any] | tuple[Any, ...] | Any)[source]¶
Sets an attribute of the sub-environments.
- Parameters:
name – The property name to change
values – Values of the property to be set to. If
values
is a list or tuple, then it corresponds to the values for each individual environment, otherwise, a single value is set for all environments.
- Raises:
ValueError – Values must be a list or tuple with length equal to the number of environments.
Additional Methods¶
- property SyncVectorEnv.np_random: tuple[Generator, ...]¶
Returns a tuple of the numpy random number generators for the wrapped envs.
- property SyncVectorEnv.np_random_seed: tuple[int, ...]¶
Returns a tuple of np random seeds for the wrapped envs.