Humanoid Standup#

../../../_images/humanoid_standup.gif

This environment is part of the Mujoco environments which contains general information about the environment.

Action Space

Box(-0.4, 0.4, (17,), float32)

Observation Space

Box(-inf, inf, (376,), float64)

import

gymnasium.make("HumanoidStandup-v4")

Description#

This environment is based on the environment introduced by Tassa, Erez and Todorov in “Synthesis and stabilization of complex behaviors through online trajectory optimization”. The 3D bipedal robot is designed to simulate a human. It has a torso (abdomen) with a pair of legs and arms. The legs each consist of two links, and so the arms (representing the knees and elbows respectively). The environment starts with the humanoid laying on the ground, and then the goal of the environment is to make the humanoid standup and then keep it standing by applying torques on the various hinges.

Action Space#

The agent take a 17-element vector for actions.

The action space is a continuous (action, ...) all in [-1, 1], where action represents the numerical torques applied at the hinge joints.

Num

Action

Control Min

Control Max

Name (in corresponding XML file)

Joint

Unit

0

Torque applied on the hinge in the y-coordinate of the abdomen

-0.4

0.4

abdomen_y

hinge

torque (N m)

1

Torque applied on the hinge in the z-coordinate of the abdomen

-0.4

0.4

abdomen_z

hinge

torque (N m)

2

Torque applied on the hinge in the x-coordinate of the abdomen

-0.4

0.4

abdomen_x

hinge

torque (N m)

3

Torque applied on the rotor between torso/abdomen and the right hip (x-coordinate)

-0.4

0.4

right_hip_x (right_thigh)

hinge

torque (N m)

4

Torque applied on the rotor between torso/abdomen and the right hip (z-coordinate)

-0.4

0.4

right_hip_z (right_thigh)

hinge

torque (N m)

5

Torque applied on the rotor between torso/abdomen and the right hip (y-coordinate)

-0.4

0.4

right_hip_y (right_thigh)

hinge

torque (N m)

6

Torque applied on the rotor between the right hip/thigh and the right shin

-0.4

0.4

right_knee

hinge

torque (N m)

7

Torque applied on the rotor between torso/abdomen and the left hip (x-coordinate)

-0.4

0.4

left_hip_x (left_thigh)

hinge

torque (N m)

8

Torque applied on the rotor between torso/abdomen and the left hip (z-coordinate)

-0.4

0.4

left_hip_z (left_thigh)

hinge

torque (N m)

9

Torque applied on the rotor between torso/abdomen and the left hip (y-coordinate)

-0.4

0.4

left_hip_y (left_thigh)

hinge

torque (N m)

10

Torque applied on the rotor between the left hip/thigh and the left shin

-0.4

0.4

left_knee

hinge

torque (N m)

11

Torque applied on the rotor between the torso and right upper arm (coordinate -1)

-0.4

0.4

right_shoulder1

hinge

torque (N m)

12

Torque applied on the rotor between the torso and right upper arm (coordinate -2)

-0.4

0.4

right_shoulder2

hinge

torque (N m)

13

Torque applied on the rotor between the right upper arm and right lower arm

-0.4

0.4

right_elbow

hinge

torque (N m)

14

Torque applied on the rotor between the torso and left upper arm (coordinate -1)

-0.4

0.4

left_shoulder1

hinge

torque (N m)

15

Torque applied on the rotor between the torso and left upper arm (coordinate -2)

-0.4

0.4

left_shoulder2

hinge

torque (N m)

16

Torque applied on the rotor between the left upper arm and left lower arm

-0.4

0.4

left_elbow

hinge

torque (N m)

Observation Space#

Observations consist of positional values of different body parts of the Humanoid, followed by the velocities of those individual parts (their derivatives) with all the positions ordered before all the velocities.

By default, observations do not include the x- and y-coordinates of the torso. These may be included by passing exclude_current_positions_from_observation=False during construction. In that case, the observation space will be a Box(-Inf, Inf, (378,), float64) where the first two observations represent the x- and y-coordinates of the torso. Regardless of whether exclude_current_positions_from_observation was set to true or false, the x- and y-coordinates will be returned in info with keys "x_position" and "y_position", respectively.

However, by default, the observation is a Box(-Inf, Inf, (376,), float64). The elements correspond to the following:

Num

Observation

Min

Max

Name (in corresponding XML file)

Joint

Unit

0

z-coordinate of the torso (centre)

-Inf

Inf

root

free

position (m)

1

x-orientation of the torso (centre)

-Inf

Inf

root

free

angle (rad)

2

y-orientation of the torso (centre)

-Inf

Inf

root

free

angle (rad)

3

z-orientation of the torso (centre)

-Inf

Inf

root

free

angle (rad)

4

w-orientation of the torso (centre)

-Inf

Inf

root

free

angle (rad)

5

z-angle of the abdomen (in lower_waist)

-Inf

Inf

abdomen_z

hinge

angle (rad)

6

y-angle of the abdomen (in lower_waist)

-Inf

Inf

abdomen_y

hinge

angle (rad)

7

x-angle of the abdomen (in pelvis)

-Inf

Inf

abdomen_x

hinge

angle (rad)

8

x-coordinate of angle between pelvis and right hip (in right_thigh)

-Inf

Inf

right_hip_x

hinge

angle (rad)

9

z-coordinate of angle between pelvis and right hip (in right_thigh)

-Inf

Inf

right_hip_z

hinge

angle (rad)

10

y-coordinate of angle between pelvis and right hip (in right_thigh)

-Inf

Inf

right_hip_y

hinge

angle (rad)

11

angle between right hip and the right shin (in right_knee)

-Inf

Inf

right_knee

hinge

angle (rad)

12

x-coordinate of angle between pelvis and left hip (in left_thigh)

-Inf

Inf

left_hip_x

hinge

angle (rad)

13

z-coordinate of angle between pelvis and left hip (in left_thigh)

-Inf

Inf

left_hip_z

hinge

angle (rad)

14

y-coordinate of angle between pelvis and left hip (in left_thigh)

-Inf

Inf

left_hip_y

hinge

angle (rad)

15

angle between left hip and the left shin (in left_knee)

-Inf

Inf

left_knee

hinge

angle (rad)

16

coordinate-1 (multi-axis) angle between torso and right arm (in right_upper_arm)

-Inf

Inf

right_shoulder1

hinge

angle (rad)

17

coordinate-2 (multi-axis) angle between torso and right arm (in right_upper_arm)

-Inf

Inf

right_shoulder2

hinge

angle (rad)

18

angle between right upper arm and right_lower_arm

-Inf

Inf

right_elbow

hinge

angle (rad)

19

coordinate-1 (multi-axis) angle between torso and left arm (in left_upper_arm)

-Inf

Inf

left_shoulder1

hinge

angle (rad)

20

coordinate-2 (multi-axis) angle between torso and left arm (in left_upper_arm)

-Inf

Inf

left_shoulder2

hinge

angle (rad)

21

angle between left upper arm and left_lower_arm

-Inf

Inf

left_elbow

hinge

angle (rad)

22

x-coordinate velocity of the torso (centre)

-Inf

Inf

root

free

velocity (m/s)

23

y-coordinate velocity of the torso (centre)

-Inf

Inf

root

free

velocity (m/s)

24

z-coordinate velocity of the torso (centre)

-Inf

Inf

root

free

velocity (m/s)

25

x-coordinate angular velocity of the torso (centre)

-Inf

Inf

root

free

anglular velocity (rad/s)

26

y-coordinate angular velocity of the torso (centre)

-Inf

Inf

root

free

anglular velocity (rad/s)

27

z-coordinate angular velocity of the torso (centre)

-Inf

Inf

root

free

anglular velocity (rad/s)

28

z-coordinate of angular velocity of the abdomen (in lower_waist)

-Inf

Inf

abdomen_z

hinge

anglular velocity (rad/s)

29

y-coordinate of angular velocity of the abdomen (in lower_waist)

-Inf

Inf

abdomen_y

hinge

anglular velocity (rad/s)

30

x-coordinate of angular velocity of the abdomen (in pelvis)

-Inf

Inf

abdomen_x

hinge

aanglular velocity (rad/s)

31

x-coordinate of the angular velocity of the angle between pelvis and right hip (in right_thigh)

-Inf

Inf

right_hip_x

hinge

anglular velocity (rad/s)

32

z-coordinate of the angular velocity of the angle between pelvis and right hip (in right_thigh)

-Inf

Inf

right_hip_z

hinge

anglular velocity (rad/s)

33

y-coordinate of the angular velocity of the angle between pelvis and right hip (in right_thigh)

-Inf

Inf

right_hip_y

hinge

anglular velocity (rad/s)

34

angular velocity of the angle between right hip and the right shin (in right_knee)

-Inf

Inf

right_knee

hinge

anglular velocity (rad/s)

35

x-coordinate of the angular velocity of the angle between pelvis and left hip (in left_thigh)

-Inf

Inf

left_hip_x

hinge

anglular velocity (rad/s)

36

z-coordinate of the angular velocity of the angle between pelvis and left hip (in left_thigh)

-Inf

Inf

left_hip_z

hinge

anglular velocity (rad/s)

37

y-coordinate of the angular velocity of the angle between pelvis and left hip (in left_thigh)

-Inf

Inf

left_hip_y

hinge

anglular velocity (rad/s)

38

angular velocity of the angle between left hip and the left shin (in left_knee)

-Inf

Inf

left_knee

hinge

anglular velocity (rad/s)

39

coordinate-1 (multi-axis) of the angular velocity of the angle between torso and right arm (in right_upper_arm)

-Inf

Inf

right_shoulder1

hinge

anglular velocity (rad/s)

40

coordinate-2 (multi-axis) of the angular velocity of the angle between torso and right arm (in right_upper_arm)

-Inf

Inf

right_shoulder2

hinge

anglular velocity (rad/s)

41

angular velocity of the angle between right upper arm and right_lower_arm

-Inf

Inf

right_elbow

hinge

anglular velocity (rad/s)

42

coordinate-1 (multi-axis) of the angular velocity of the angle between torso and left arm (in left_upper_arm)

-Inf

Inf

left_shoulder1

hinge

anglular velocity (rad/s)

43

coordinate-2 (multi-axis) of the angular velocity of the angle between torso and left arm (in left_upper_arm)

-Inf

Inf

left_shoulder2

hinge

anglular velocity (rad/s)

44

angular velocity of the angle between left upper arm and left_lower_arm

-Inf

Inf

left_elbow

hinge

anglular velocity (rad/s)

excluded

x-coordinate of the torso (centre)

-Inf

Inf

root

free

position (m)

excluded

y-coordinate of the torso (centre)

-Inf

Inf

root

free

position (m)

Additionally, after all the positional and velocity based values in the table, the observation contains (in order):

  • cinert: Mass and inertia of a single rigid body relative to the center of mass (this is an intermediate result of transition). It has shape 14*10 (nbody * 10) and hence adds to another 140 elements in the state space.

  • cvel: Center of mass based velocity. It has shape 14 * 6 (nbody * 6) and hence adds another 84 elements in the state space

  • qfrc_actuator: Constraint force generated as the actuator force. This has shape (23,) (nv * 1) and hence adds another 23 elements to the state space.

  • cfrc_ext: This is the center of mass based external force on the body. It has shape 14 * 6 (nbody * 6) and hence adds to another 84 elements in the state space. where nbody stands for the number of bodies in the robot and nv stands for the number of degrees of freedom (= dim(qvel))

The body parts are:

id (for v2,v3,v4)

body part

0

worldBody (note: all values are constant 0)

1

torso

2

lwaist

3

pelvis

4

right_thigh

5

right_sin

6

right_foot

7

left_thigh

8

left_sin

9

left_foot

10

right_upper_arm

11

right_lower_arm

12

left_upper_arm

13

left_lower_arm

The joints are:

id (for v2,v3,v4)

joint

0

root

1

root

2

root

3

root

4

root

5

root

6

abdomen_z

7

abdomen_y

8

abdomen_x

9

right_hip_x

10

right_hip_z

11

right_hip_y

12

right_knee

13

left_hip_x

14

left_hiz_z

15

left_hip_y

16

left_knee

17

right_shoulder1

18

right_shoulder2

19

right_elbow

20

left_shoulder1

21

left_shoulder2

22

left_elfbow

The (x,y,z) coordinates are translational DOFs while the orientations are rotational DOFs expressed as quaternions. One can read more about free joints on the Mujoco Documentation.

Note: HumanoidStandup-v4 environment no longer has the following contact forces issue. If using previous HumanoidStandup versions from v4, there have been reported issues that using a Mujoco-Py version > 2.0 results in the contact forces always being 0. As such we recommend to use a Mujoco-Py version < 2.0 when using the Humanoid environment if you would like to report results with contact forces (if contact forces are not used in your experiments, you can use version > 2.0).

Rewards#

The reward consists of three parts:

  • uph_cost: A reward for moving upward (in an attempt to stand up). This is not a relative reward which measures how much upward it has moved from the last timestep, but it is an absolute reward which measures how much upward the Humanoid has moved overall. It is measured as (z coordinate after action - 0)/(atomic timestep), where z coordinate after action is index 0 in the state/index 2 in the table, and atomic timestep is the time for one frame of movement even though the simulation has a framerate of 5 (done in order to inflate rewards a little for faster learning).

  • quad_ctrl_cost: A negative reward for penalising the humanoid if it has too large of a control force. If there are nu actuators/controls, then the control has shape nu x 1. It is measured as 0.1 x sum(control2).

  • quad_impact_cost: A negative reward for penalising the humanoid if the external contact force is too large. It is calculated as min(0.5 * 0.000001 * sum(external contact force2), 10).

The total reward returned is reward = uph_cost + 1 - quad_ctrl_cost - quad_impact_cost

Starting State#

All observations start in state (0.0, 0.0, 0.105, 1.0, 0.0 … 0.0) with a uniform noise in the range of [-0.01, 0.01] added to the positional and velocity values (values in the table) for stochasticity. Note that the initial z coordinate is intentionally selected to be low, thereby indicating a laying down humanoid. The initial orientation is designed to make it face forward as well.

Episode End#

The episode ends when any of the following happens:

  1. Truncation: The episode duration reaches a 1000 timesteps

  2. Termination: Any of the state space values is no longer finite

Arguments#

No additional arguments are currently supported.

import gymnasium as gym
env = gym.make('HumanoidStandup-v4')

There is no v3 for HumanoidStandup, unlike the robot environments where a v3 and beyond take gymnasium.make kwargs such as xml_file, ctrl_cost_weight, reset_noise_scale etc.

import gymnasium as gym
env = gym.make('HumanoidStandup-v2')

Version History#

  • v4: All MuJoCo environments now use the MuJoCo bindings in mujoco >= 2.1.3

  • v3: Support for gymnasium.make kwargs such as xml_file, ctrl_cost_weight, reset_noise_scale, etc. rgb rendering comes from tracking camera (so agent does not run away from screen)

  • v2: All continuous control environments now use mujoco-py >= 1.50

  • v1: max_time_steps raised to 1000 for robot based tasks. Added reward_threshold to environments.

  • v0: Initial versions release (1.0.0)