Action Wrappers#

Action Wrapper#

class gymnasium.ActionWrapper(env: Env)#

Superclass of wrappers that can modify the action before env.step().

If you would like to apply a function to the action before passing it to the base environment, you can simply inherit from ActionWrapper and overwrite the method action() to implement that transformation. The transformation defined in that method must take values in the base environment’s action space. However, its domain might differ from the original action space. In that case, you need to specify the new action space of the wrapper by setting self.action_space in the __init__() method of your wrapper.

Let’s say you have an environment with action space of type gymnasium.spaces.Box, but you would only like to use a finite subset of actions. Then, you might want to implement the following wrapper:

class DiscreteActions(gymnasium.ActionWrapper):
    def __init__(self, env, disc_to_cont):
        super().__init__(env)
        self.disc_to_cont = disc_to_cont
        self.action_space = Discrete(len(disc_to_cont))

    def action(self, act):
        return self.disc_to_cont[act]

if __name__ == "__main__":
    env = gymnasium.make("LunarLanderContinuous-v2")
    wrapped_env = DiscreteActions(env, [np.array([1,0]), np.array([-1,0]),
                                        np.array([0,1]), np.array([0,-1])])
    print(wrapped_env.action_space)         #Discrete(4)

Among others, Gymnasium provides the action wrappers ClipAction and RescaleAction for clipping and rescaling actions.

Wraps an environment to allow a modular transformation of the step() and reset() methods.

Parameters:

env – The environment to wrap

action(self, action)#

Returns a modified action before env.step() is called.

Parameters:

action – The original step() actions

Returns:

The modified actions

Clip Action#

class gymnasium.wrappers.ClipAction(env: Env)#

Clip the continuous action within the valid Box observation space bound.

Example

>>> import gymnasium as gym
>>> env = gym.make('Bipedal-Walker-v3')
>>> env = ClipAction(env)
>>> env.action_space
Box(-1.0, 1.0, (4,), float32)
>>> env.step(np.array([5.0, 2.0, -10.0, 0.0]))
# Executes the action np.array([1.0, 1.0, -1.0, 0]) in the base environment

A wrapper for clipping continuous actions within the valid bound.

Parameters:

env – The environment to apply the wrapper

Rescale Action#

class gymnasium.wrappers.RescaleAction(env: Env, min_action: Union[float, int, ndarray], max_action: Union[float, int, ndarray])#

Affinely rescales the continuous action space of the environment to the range [min_action, max_action].

The base environment env must have an action space of type spaces.Box. If min_action or max_action are numpy arrays, the shape must match the shape of the environment’s action space.

Example

>>> import gymnasium as gym
>>> env = gym.make('BipedalWalker-v3')
>>> env.action_space
Box(-1.0, 1.0, (4,), float32)
>>> min_action = -0.5
>>> max_action = np.array([0.0, 0.5, 1.0, 0.75])
>>> env = RescaleAction(env, min_action=min_action, max_action=max_action)
>>> env.action_space
Box(-0.5, [0.   0.5  1.   0.75], (4,), float32)
>>> RescaleAction(env, min_action, max_action).action_space == gym.spaces.Box(min_action, max_action)
True

Initializes the RescaleAction wrapper.

Parameters:
  • env (Env) – The environment to apply the wrapper

  • min_action (float, int or np.ndarray) – The min values for each action. This may be a numpy array or a scalar.

  • max_action (float, int or np.ndarray) – The max values for each action. This may be a numpy array or a scalar.